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Finite Automaton (FA) fa
2014.1
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use automata for modeling, specification and verification

Definition a finite automaton A = (S, I,Σ,T,F) consists of the following components

• set of states S (usually finite)

• set of initial states I ⊆ S

• input-alphabet Σ (usually finite as well)

• transition relation T ⊆ S×Σ×S
written s a→ s′ iff (s,a,s′) ∈ T iff T (s,a,s′) “holds”

• set of final states F ⊆ S
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Language of an FA fa
2014.1
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Definition FA A accepts a word w ∈ Σ∗ iff there exists si and ai with

s0
a1→ s1

a2→ s2
a3→ . . .

an−1→ sn−1
an→ sn,

where n≥ 0, s0 ∈ I, sn ∈ F and w = a1 · · ·an (n = 0⇒ w = ε).

Definition the language L(A) of A is the set of words accepted by it

• use regular languages for syntax specification (e.g. in a scanner / parser)

• use FA or regular languages to specify event streams
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Product Automaton fa
2014.1
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Definition the product automaton A = A1×A2 of two FA A1 and A2 over the same alpha-
bet Σ1 = Σ2 has the following components:

S = S1×S2 I = I1× I2

Σ = Σ1 = Σ2 F = F1×F2

T ((s1,s2),a,(s′1,s
′
2)) iff T1(s1,a,s′1) and T2(s2,a,s′2)

Theorem let A, A1, and A2 as above, then L(A) = L(A1)∩L(A2)

Example construct automaton, which accepts words with prefix ab and suffix ba.

(as regular expression: a ·b ·1∗ ∩ 1∗ ·b ·a, where 1 denotes all letters)
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Completeness and Determinism fa
2014.1
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Definition for s ∈ S, a ∈ Σ let s a→ denote the set of successors of s defined as

s a→ = {s′ ∈ S | T (s,a,s′)}

Definition an FA is complete iff |I|> 0 and |s a→ |> 0 for all s ∈ S and a ∈ Σ.

Definition . . . deterministic iff |I| ≤ 1 and |s a→ | ≤ 1 for all s ∈ S and a ∈ Σ.

Proposition . . . deterministic and complete iff |I|= 1 and |s a→ |= 1 for all s ∈ S, a ∈ Σ.
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Sub-Set Construction fa
2014.1
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Definition the power-automaton A = P(A1) of an FA A1 consists of the components:

S = P(S1) (P = power set) I = {I1}

Σ = Σ1 F = {F ′ ⊆ S1 | F ′∩F1 6= /0}

T (S′,a,S′′) iff S′′ =
⋃

s∈S′
s a→

Theorem let A, A1 as above, then L(A) = L(A1) and A is deterministic and complete.

Example: spam-filter based on the white-list “abb”, “abba”, and “abacus”!

(regular expression: “abb” | “abba” | “abacus”)
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Complement-Automaton fa
2014.1
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Definition the complement-automaton A =C(A1) of an FA A1 has the same components
as A1, except for the set of final states, which is F = S\F1.

Theorem the complement-automaton A =C(A1) of a deterministic and complete

FA A1 accepts the complement language L(A) = L(A1) = Σ∗\L(A1).

Example: spam-filter based on the black-list “abb”, “abba”, and “abacus”!

(regular expression: “abb” | “abba” | “abacus”)
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Oracle-Automaton fa
2014.1
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Idea: replace non-determinism with oracle

Definition the oracle-automaton A = Oracle(A1) of FA A1 has the following components:

• S = S1

• I = I1

• Σ = Σ1×S1

• T (s,(a, t),s′) iff s′ = t and T1(s,a, t)

• F = F1
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Optimized Oracle-Automaton Construction fa
2014.1
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Proposition π1(L(Oracle(A1))) = L(A1) (π1 projection on first component)

Proposition Oracle(A1) is deterministic iff |I1| ≤ 1.

Proposition Oracle(A1) is almost always incomplete (e.g. T1 6= S1×Σ1×S1 and |S1|> 1).

Note completeness can be achieved, if A1 is complete, and if {0, . . . ,n− 1} is added to
Σ1 instead of S1, where n is the maximum number of successors: n = maxs∈S,a∈Σ|s

a→ |.

T (s,(a, i),s′) iff s′ = s j, s a→= {s0, . . . ,sm−1}, j ≡ imodm

Exercise construct the oracle automaton for a ·b ·1∗ ∩ 1∗ ·b ·a
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Digital Design fa
2014.1
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Q’

QD

Q’

QD
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I/O-Automaton fa
2014.1
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implementations of automata have to be deterministic

Definition I/O-automaton A = (S, i,Σ,T,Θ,O) consists of:

• a (finite) set of states S,

• exactly one initial state i ,

• an input alphabet Σ,

• a transition function T :S×Σ→ S

• an output alphabet Θ , with

• output function O:S×Σ→Θ (Moore machine: O:S→Θ)
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Behavior of an I/O-Automaton fa
2014.1
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Let w ∈ Σ∗ and a ∈ Σ.

Definition interpret T as extended transition function T :S×Σ∗→ S as follows:

s = T (s,ε) and s′ = T (s,a ·w)⇔∃s′′[s′′ = T (s,a)∧ s′ = T (s′′,w)].

Definition interpret O as extended output function O:S×Σ∗→Θ∗ as follows:

O(s,ε) = ε and O(s,a ·w) = b ·w′, with b = O(s,a), s′= T (s,a) and w′= O(s′,w).

Definition the behavior B:Σ∗→Θ∗ of an I/O-automaton is defined as B(w) = O(i,w).

Example S = {0,1}, Σ = {a}, Θ = {e,o},
a/e

0 1

a/o

T (0,a2n) = 0, T (0,a2n+1) = 1, T (1,a2n) = 1, T (1,a2n+1) = 0

B(a2n) = (oe)n, B(a2n+1) = (oe)no
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I/O-Automaton as FA fa
2014.1
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given an I/O-automaton A = (S, i,Σ,T,Θ,O).

Definition the FA for A is defined as A′ = (S,{i},Σ×Θ,T ′,S) with

T ′(s,(a,b),s′) iff s′ = T (s,a) and b = O(s,a).

Proposition B(w) = w′ iff (w,w′) ∈ L(A′)

Example continued:
0 1

(a,u)

(a,g)

(graphically almost no difference)
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FA as I/O-Automaton fa
2014.1
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let A = (S, I,Σ,T,F) be an FA

Definition the I/O-automaton for A is defined as A′ = (P(S), I,Σ,T ′,{0,1},O) with T ′ the
transition relation of P(A) and O(S′,a) = 1 iff S′∩F 6= /0.

Proposition w ∈ L(A) iff B(w · x) ∈ 1|w| ·1 for one x ∈ Σ

Conclusion of the comparison of I/O-automata with FA:

in substance both are the same mathematical structure

we concentrate on the more compact and more elegant FA version

in particular non-determinism is easier to use with FA
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Process Algebra (PA) pa
2014.1
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• modeling of distributed systems

– Calculus of Communicating Systems (CCS) [Milner80]

– Communicating Sequential Processes (CSP) [Hoare85]

– more specifically: asynchronously communicating processes (protocols / SW)

• synthesis: process algebra (PA) as programming language (e.g. Occam, Lotos)

• verification of (abstract) PA models is simpler

• theory: mathematical properties of distributed systems

– how to compare distributed systems?

– simulation, bisimulation, observability, divergence (⇒ model checking course)
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PA Equations (PAE) pa
2014.1
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• right linear grammar = regular language = Chomsky 3 language

grammar G: N = ε | aM | bM M = cN | dN start symbol N

⇒ language L(G) = ((a | b)(c | d))∗ (as regular expression)

• syntax in PA:

– same idea: equations of non-terminals = processes

– concatenation not with juxtaposition but with ‘.’ operator

– choice represented with ‘+’ operator (not with ‘|’)

• semantics

– we are only interested in potential sequences = event streams
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Concatenation pa
2014.1
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graphical representation

P = a.P
a

P

R.
a.P a→ P

equation operational semantics rule
(here P is only a meta variable)

‘.’ operator means sequential composition
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Choice pa
2014.1
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graphical representation R1
+

P a→ P′

(P+Q)
a→ P′

P = a.P+b.P
a

P

b

R2
+

Q a→ Q′

(P+Q)
a→ Q′

equation operational semantics rule
(here again P,Q are meta variables)

‘+’ operator means non-deterministic choice
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Ticket-Vending-Machine pa
2014.1
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P = 5Euro.Payed5+10Euro.Payed10

Payed5 = button.childTicket.P+5Euro.Payed10

Payed10 = button.adultTicket.P

P

5Euro

button

Payed10

button

Payed5

5Euro

childTicket adultTicket

10Euro

PrintChildTicket

PrintAdultTicket
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Labelled Transition Systems (LTS) pa
2014.1
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• LTS as operational semantics of PAE

• almost the same as an automaton, but . . .

– no final states: in some sense all states are final

– only possible event streams matter

• LTS A = (S, I,Σ,T ) with

– state set S

– actions Σ

– transition relation T ⊆ S×Σ×S defined through operational semantics

– initial states I ⊆ S
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Syntactical Restrictions pa
2014.1
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• divergent self-cycles

– P = a.P+P is an invalid PAE

– there are no ε-transitions in contrast to FAs

(actions “need time”, ε has connotation of not really taking time)

• avoid self-cycles

– term T is guarded if T only occurs in the form a.T

(where a can be different for all occurrences of T of course)

– simplest restriction:

process variables on the right hand side (RHS) of an PAE are all guarded

– or more complex: each “cycle” contains at least one action
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Data in PA pa
2014.1
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• actions and states can be parameterized

– which also gives rise to parameterized equations

• previous example with x ∈ {5,10}:

P = euro(x).Payed(x)

Payed(5) = button.print(childTicket).P+ euro(5).Payed(10)

Payed(10) = button.print(adultTicket).P

• it is possible to operate on data as well:

Payed(x) = euro(y).Payed(x+ y)+button.ticket(x).P

– actually allows modeling of infinite systems

– and turns PA into a real programming language
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Conditions pa
2014.1
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Rthen
P a→ P′

if B then P else Q a→ P′
B

Relse
Q a→ Q′

if B then P else Q a→ Q′
¬B

(and similar rules for if-then alone)

Payed(X) = euro(Y ).Payed(X +Y )+button.Print(X)

Print(X) = if (X = 5) then childTicket.P+ if (X = 10) then adultTicket.P
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Parallel-Operator pa
2014.1
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synchronization through rendezvous in CSP

Θ⊆ Σ

R||Θ
P a→ P′ Q a→ Q′

P ||Θ Q a→ P′ ||Θ Q′
a ∈Θ rendezvous

R1
||Θ

P a→ P′

P ||Θ Q a→ P′ ||Θ Q
a 6∈Θ interleaving

R2
||Θ

Q a→ Q′

P ||Θ Q a→ P ||Θ Q′
a 6∈Θ interleaving

rendezvous does not distinguish sender and receiver

R||
P ||Θ Q a→ P′ ||Θ Q′

P || Q a→ P′ || Q′
Θ = Σ(P)∩Σ(Q)

Σ(P) is the subset of actions of Σ which occur in P syntactically
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Parallel-Operator Properties pa
2014.1
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Proposition || is commutative: P || Q a→ P′ || Q′ iff Q || P a→ Q′ || P′

proof follows directly from the rules

Proposition || is associative

proof: Let P = P1 || (P2 || P3), P′ = P′1 || (P
′
2 || P

′
3), Q = (P1 || P2) || P3, Q′ = (P′1 || P

′
2) || P

′
3

To show: P a→ P′ ⇔ Q a→ Q′

8 cases of a ∈ Σ(Pi) resp. a 6∈ Σ(Pi) for each direction

intuition:

1. a ∈ Σ(Pi)⇒ Pi
a→ P′i

2. Pi with a 6∈ Σ(Pi) does not change (P′i = Pi)

3. the sames applies for every “parallel composition” of the Pi

Formal Models #342.251 SS 2014 Armin Biere JKU Linz



Implications of Properties of the Parallel-Operator pa
2014.1

26

• “parenthesis” around || can be omitted:

P || (Q || R) verhält sich wie (P || Q) || R verhält sich wie P || Q || R

• order is irrelevant:

P || Q || R verhält sich wie P || R || Q verhält sich wie Q || P || R etc.

• parallel composition ||
i∈J

Pi of arbitrary processes Pi over an index set J:

R||
∀Pi,a ∈ Σ(Pi) Pi

a→ P′i ∀Pi,a 6∈ Σ(Pi) P′i = Pi

||Pi
a→ ||P′i

∃Pi Pi
a→ P′i
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Hiding pa
2014.1

27

• hiding resp. abstraction of internal, unobservable actions

• abstracted to “silent” action τ

– assumption: τ 6∈ Σ

∗ formally consider only Σ
.
∪ {τ} as actions

∗ it is not possible to synchronize on τ

– τ still needs time

R 6∈\
P a→ Q

P\Θ a→ Q\Θ
a 6∈Θ R∈\

P a→ Q

P\Θ
τ
→ Q\Θ

a ∈ Θ

• typical usage of internal synchronization R = (||ni=1 Qi)\{x1, . . . ,xn}
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Railroad Crossing pa
2014.1
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[BradfieldStirling]

Road = car.up.ccross.down.Road

Rail = train.green.tcross.red.Rail

Signal = green.red.Signal + up.down.Signal

Crossing = (Road || Rail || Signal)\{green,red,up,down}

up

down

green

red

Signal

Crossing Road

Railtcross
ccross
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Linking pa
2014.1
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Linking as substitution of actions

R[ ]

P a→ Q

P[b/a] b→ Q[b/a]
Example: (a.P)[b/a] b→ P[b/a]

needed to “link” processes or instantiate templates:

P = a.b.c.P P[x/b] || P[y/b]

a

b

c c

a

x

c

a

y

a

x

x

y

y

c

P P[x/b] P[y/b] P[x/b] || P[y/b]
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Parameterized Linking pa
2014.1
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P = a.b.c.P
3
||

i=1
P[bi/b]

b
3

b
3

b
2

b
1

b
1

b
1

b
2

b
3

b
2

b
1

b
3

b
2

c

a
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Milner’s Scheduler pa
2014.1
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• classical example of process algebra

– modeling of a round robin scheduler

• scheduling of n processes ||Pi with P = a.z.b.P and Pi = P[ai/a,zi/z,bi/b]

– a start one run of a process

– z internal action(s)

– b end of one run of a process

• Restrictions:

– processes are started round robin in the order P1, P2, . . .

– nothing is about execution order of the bi!

Formal Models #342.251 SS 2014 Armin Biere JKU Linz



Incorrect Solution for Milner’s Scheduling pa
2014.1
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• idea: proxy for each process

• divide scheduler R′ in token ring of n parallel cyclic processes Q′

• each Q′i controls start (ai) and end (bi) of Pi, . . .

• . . . hands over xi control to next Q′i+1 . . .

• and then waits to get control xi−1 from previous Q′i−1 in ring

Q′ = a.x.b.y.Q′

Q′1 = Q′[a1/a, x1/x, b1/b, xn/y]

Q′i = (y.Q′)[ai/a, xi/x, bi/b, xi−1/y] i ∈ {2, . . . ,n}

R′ =
n
||

i=1
Q′i
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Correct Solution for Milner’s Scheduler pa
2014.1

33

• incorrect solution does not accept the legal sequence:

– ending P2 before P1: a1a2b2b1 . . .

• decouple ending (b) and accepting control (y)

Q = a.x. (b.y + y.b) .Q

Q1 = Q[a1/a, x1/x, b1/b, xn/y]

Qi = (y.Q)[ai/a, xi/x, bi/b, xi−1/y] i ∈ {2, . . . ,n}

R =
n
||

i=1
Qi

• implemented by non blocking waiting on two different messages

– in programming languages: try-locking, multiple threads, select (java.nio), . . .

• slightly sloppy alternative notation b.y+ y.b = b ‖ y (we do not have a nil process)
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Differences in CCS pa
2014.1
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• actions: Σ
.
∪ Σ

.
∪ {τ} overlined actions are outputs, otherwise inputs

• different hiding principle (new syntax: double instead of single backslash)

R\\
P a→ Q

P\\Θ
a→ Q\\Θ

a 6∈Θ∪Θ

• pairwise explicit synchronization

R|||
P a→ P′ Q a→ Q′

P |||Q
τ
→ P′ |||Q′

a ∈ Σ
.
∪ Σ

R1
|||

P a→ P′

P |||Q a→ P′ |||Q
R2
|||

Q a→ Q′

P |||Q a→ P |||Q′
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Comparison of CSP and CCS on Train Collision Example pa
2014.1
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Road = car.up.ccross.down.Road

Rail = train.green.tcross.red.Rail

Signal = green.red.Signal + up.down.Signal

Crossing = (Road || Rail || Signal)\{green,red,up,down}

resp. in CCS

Road = car.up.ccross.down.Road

Rail = train.green.tcross.red.Rail

Signal = green.red.Signal + up.down.Signal

Crossing = (Road |||Rail |||Signal)\\{green,red,up,down}
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Other Variants pa
2014.1
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• originally CSP had channels with data

– inputs: channel ? datain, outputs: channel ! dataout

• π-calculus after [MilnerParrowWalker]

– (references to) channels / connections can be used as data as well

– example: TimeAnnounce = ring(caller).caller(CurrentTime).hangup.TimeAnnounce

• probabilistic behavior

– transitions have a “transition probability”

• timed process algebra

– transitions need (explicitly specified) time
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Petri Nets (PN) pn
2014.1
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• beside process algebra the most common modeling language for distributed systems

– investigated since 60ies, now also known as activity diagrams in UML

– again: asynchronously communicating processes (protocols / SW)

• modeling and verification tools available

• theory: many interesting results, vast literature

– finiteness, deadlock, . . .

• extension motivated by practice

– data, coloring, hierarchy, and again quantitative aspects etc.
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Condition-Event-Net (CEN) pn
2014.1
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Definition

A CEN N = (C, I,E,G) is made of conditions C, an initial marking I ⊆ C, events E and a
dependence graph G⊆ (C×E)

.
∪ (E×C)

• we also use→ instead of G

c
1

c
4

c
3

c
2

e

I

• can be interpreted as bipartite graph oder . . .

• . . . hyper graph with multiple source resp. target edges E
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Producer Consumer CEN: Initial Marking pn
2014.1
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produce receive

deliver consume

only one event / transition can fire
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Producer Consumer CEN: Delivered pn
2014.1
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produce receive

deliver consume

two events / transitions can fire
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Producer Consumer CEN: Produced Again pn
2014.1
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produce receive

deliver consume

target condition of deliver occupied
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Producer Consumer CEN: Consumed pn
2014.1
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produce receive

deliver consume

again choice of two possible events
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CEN Semantics as LTS pn
2014.1

43

Definition Let CEN N = (C, I,E,G). The LTS L = (S,{I},Σ,T ) for N is defined as

S = P(C) Σ = E

T (C1,e,C2) iff G−1(e)⊆C1 pre-conditions satisfied (1)

G(e)∩C1 = /0 post-conditions satisfied (2)

C2 = (C1\G−1(e)) ∪ G(e) state update

G(e) = post -conditions of event e (or e→)

G−1(e) = pre -conditions of event e (or→ e)
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Ad: CEN Semantics pn
2014.1
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• states M ∈ P(C) of the LTS are also called markings of the CEN

• event e is enabled in M iff M e→ 6= /0

• marking M ∈ P(C) is a deadlock iff

– M is is “dead end” in the reachability graph of the LTS iff

– no event in M is enabled iff

– all events are disabled iff

– ∀e ∈ E[M e→= /0]

• a CEN has a deadlock iff a deadlock is reachable
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Example Dining Philosophers pn
2014.1
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n philosophers, n forks, n plates

philosophers alternate in thinking and eating

they need to pick up and use two forks to eat

forks can not be picked up at the same time (atomically)
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Capacities pn
2014.1
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n conditions:

produce

deliver receive

consume

buffer capacity n

produce

deliver receive

consume

buffer capacity 2
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Place Transition Net (PTN) pn
2014.1

47

Definition A PTN N = (P, I,T,G,C) consists of places P, initial marking I:P→ N,
transitions T , connection graph G⊆ (P×T )

.
∪ (T ×P), and capacities C:P

.
∪ G→ N∞.

t

5

2

3

• capacity of a connection is finite and is one if not specified explicitly

• capacity of a place can be ∞ and is ∞ if not specified explicitly

• CEN can be interpreted as PTN with constant capacity C ≡ 1
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Filling Station pn
2014.1

48

from [W. Reisig, A Primer in Petri Net Design, 1992]

unfueled cars

at pump

cars enter

filling station

cars in

filling station

drive up

to a pump
tanks are

filled
fueled cars

at pump

payment cars ready

to leave

cars leave

pumps

do free pumps

freed pumps

free

cashiers

free spaces

cars in filling

station exitway

cars leave

filling station

Formal Models #342.251 SS 2014 Armin Biere JKU Linz



PTN Semantics as LTS pn
2014.1
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given a PTN N = (P, I,T,G,C)

Definition transition t ∈ T can fire in a state / marking M:P→ N iff

C((p, t))≤M(p) for all p ∈ G−1(t) and

C((t,q))+M(q)≤C(q) for all q ∈ G(t).

Definition transition t ∈ T leads from M1:P→ N to M2:P→ N iff

t can fire in M1, and M2 = M1 − M− + M+ with

M−(p) =
{

C((p, t)) p ∈ G−1(t)
0 otherwise

M+(p) =
{

C((t, p)) p ∈ G(t)
0 otherwise

Definition the LTS L = (S,{I},Σ,TL) of N is defined through

S = NP
Σ = T and TL(M1, t,M2) iff t leads from M1 to M2
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application in computer science goes back to A. Pnueli

• often used to specify concurrent and reactive systems

• allows to relate properties at different time points

– “tomorrow the weather is nice”

– “reactor is not going to overheat”

– “central locking of a car opens immediately after a crash”

– “airbag only inflates if a car crash happens”

– “acknowledge (ack) has to be preceded by a request (req)”

– “if the elevator is called it will show up eventually”

• granularity of time steps has to be defined

Formal Models #342.251 SS 2014 Armin Biere JKU Linz



Simplified Hennessy-Milner Logic (HML) tl
2014.1

51

HML is an example for temporal logic over LTS

let Σ be the alphabet of actions

Definition syntax consists of the usual boolean constants {0,1}, boolean

operators {∧,¬,→, . . .} and unary modal operators [a] and 〈a〉 with a ∈ Σ.

read [a] f as for all a-successors of the current state f holds

read 〈a〉 f as for one a-successor of the current state f holds

abbreviations 〈Θ〉 f denotes
∨

a∈Θ

〈a〉 f resp. [Θ] f for
∧

a∈Θ

[a] f

Θ can also be written as a boolean expression over Σ

e.g. [a∨b] f ≡ [{a,b}] f oder 〈¬a∧¬b〉 f ≡ 〈Σ\{a,b}〉 f
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1. [a]1 for all a-successor 1 holds (always true)

2. [a]0 for all a-successor 0 holds

(a is not possible)

3. 〈a〉1 for one a-successor 1 holds

(a should be possible)

4. 〈a〉0 for one a-successor 0 holds (always wrong)

5. 〈a〉1 ∧ [b]0 a has to be possible but not b

6. 〈a〉1 ∧ [¬a]0 a and only a should be possible

7. [a∨b]〈a∨b〉1 after a or b again a or b should be possible

8. 〈a〉 [b] [b]0 a should be possible and afterwards b not twice

9. [a](〈a〉1 → [a]〈a〉1) if a is possible after a again, then also a second time
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Given LTS L = (S, I,Σ,T ).

Definition semantics are defined recursively as s |= f (read “ f holds in s”),
with s ∈ S and f a simplified HML formula.

s |= 1

s 6|= 0

s |= [Θ]g iff ∀ a ∈Θ ∀ t ∈ S: if s a→ t then t |= g

s |= 〈Θ〉g iff ∃ a ∈Θ ∃ t ∈ S: s a→ t and t |= g

Definition L |= f holds (read “ f holds in L”) iff s |= f for all s ∈ I

Definition expansion of f is the set of states [[ f ]] in which f holds.

[[ f ]] = {s ∈ S | s |= f}
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Let L = (S, I,Σ,T ) be an LTS.

Definitions A Trace π of L is a finite or infinite sequence of states

π = (s0,s1, . . .)

For each pair (si,si+1) in π there is an a ∈ Σ with si
a→ si+1. Therefore there exist a0,a1, . . .

with

s0
a0→ s1

a1→ s2
a2→ . . .

|π| is the length of π, e.g. |π|= 2 for π = (s0,s1,s2), and |π|= ∞ for infinite traces.

π(i) is the i’th state si of π for i≤ |π|

πi = (si,si+1, . . .) denotes the suffix of π starting with the i’th state si for i≤ |π|

Note: if |π|= ∞ then |πi|= ∞ for all i ∈ N
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first only in combination with HML

Definition CTL/HML syntax based on the syntax of HML and additionally

unary temporal path operators X, F, G and one binary temporal path operator U.

Path operators have to be prefixed with a path-quantifier E or A.

EX f in one (immediate) successor state f holds ≡ 〈Σ〉 f

AX f in all successor states f holds ≡ [Σ] f

EF f in one future f holds eventually exists finally

AF f in all possible orders of events f holds eventually always finally

EG f in one future f holds all the time exists globally

AG f f holds always always globally

E[ f U g] potentially f holds until finally g gilt exists until
(note g has to hold on this trace eventually)

A[ f U g] f always holds until finally g occurs always until
(note g has to hold on all traces eventually)
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¬EX f ≡ AX¬ f ¬〈Θ〉 f ≡ [Θ]¬ f ¬EF f ≡ AG¬ f ¬EG f ≡ AF¬ f

(De’Morgan for E[· U ·] requires additional temporal path operator)

AG [¬safe]0 it is never possible to execute unsafe actions

EF〈¬safe〉1 potentially an unsafe action can be executed

¬E[¬〈req〉1 U 〈ack〉1] there is an order of events in which ack becomes possible

and req was not possible before

AG [req]AF [¬ack]0 always after req a point is reached,

from no other action than ack is possible

CTL/HML allows to combine requirements about states and actions

which is required to express useful facts and unfortunately not very elegant
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Let f be a CTL/HML formula, L an LTS, π a trace of L, and i, j ∈ N.

Definition semantics are defined recursively: s |= f (read “ f holds in s”)

(only for the new CTL operators here)

s |= EX f iff ∃π[π(0) = s ∧ π(1) |= f ]

s |= AX f iff ∀π[π(0) = s⇒ π(1) |= f ]

s |= EF f iff ∃π[π(0) = s ∧ ∃i[i≤ |π| ∧ π(i) |= f ]]

s |= AF f iff ∀π[π(0) = s⇒∃i[i≤ |π| ∧ π(i) |= f ]]

s |= EG f iff ∃π[π(0) = s ∧ ∀i[i≤ |π| ⇒ π(i) |= f ]]

s |= AG f iff ∀π[π(0) = s⇒∀i[i≤ |π| ⇒ π(i) |= f ]]

s |= E[ f U g] iff ∃π[π(0) = s ∧ ∃i[i≤ |π| ∧ π(i) |= g ∧ ∀ j[ j < i⇒ π( j) |= f ]]]

s |= A[ f U g] iff ∀π[π(0) = s⇒∃i[i≤ |π| ∧ π(i) |= g ∧ ∀ j[ j < i⇒ π( j) |= f ]]]
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• classical semantic model for temporal logic

• only states, no actions

– LTS with exactly one action (|Σ|= 1)

– additionally annotation of states with atomic propositions

• has its roots in modal logics:

– different “worlds” from S are connected through→ resp. T

– [ ] f iff for all immediate successor worlds f holds

– 〈 〉 f iff there is an immediate successor world in which f holds
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Let A be the set of atomic propositions (boolean predicates).

Definition a Kripke structure K = (S, I,T,L) consists of the following components:

• set of states S.

• initial states I ⊆ S with I 6= /0

• a total transition relation T ⊆ S×S (T total iff ∀s[∃t[T (s, t)]])

• labelling/marking/annotation L :S→ P(A).

Labelling maps a state s on to the set of atomic propositions that hold in s:

L(s) = {gray,warm,dry}
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Definition the Kripke structure K = (SK, IK,TK,L) for a complete LTS L = (SL, IL,Σ,TL) is
defined with the following components

A = Σ SK = SL×Σ IK = IL×Σ L :(s,a) 7→ a

TK((s,a),(s
′,a′)) iff TL(s,a,s

′) and a′ arbitrary

similar construction as the oracle automaton

Proposition s0
a0→ s1

a1→ ···
an−1→ sn in L

iff

(s0,a0)→ (s1,a1) · · · → (sn,an) in K

Note often S⊆ Bn, Σ = {a1, . . . ,an}, and L((s1, . . . ,sn)) = {ai | si = 1}
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a
bQD

QD

S = B2

I = B2

T = {((0,0),(0,1)),

((0,1),(1,0)), . . .}

a ∈ L(s) iff s ∈ {(0,1),(1,1)}

b ∈ L(s) iff s ∈ {(1,0),(1,1)}

a

b

r

QD

QD

S = B3

I = B3

T = . . .

a ∈ L(s) iff s ∈ {(−,−,1)}

b ∈ L(s) iff s ∈ {(−,1,−)}

r ∈ L(s) iff s ∈ {(1,−,−)}

we assume that circuits abstracted to netlists do not have an initial state
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classical version of CTL on Kripke structures

Definition CTL syntax contains all p ∈ A , all boolean operators ∧,¬,∨,→, . . . and the
temporal operators EX,AX,EF,AF,EG,AG,E[· U ·] and A[· U ·].

Definition CTL semantics over a Kripke structure K = (S, I,T,L) are defined recursively
as for CTL/HML, except for the base case in which s |= p iff p ∈ L(s).

Examples for
2-Bit counter
with reset

AG(r→ AX(a∧b))

AG EX(a∧b)

AG EF(a∧b)

AG AF(a∧b) infinitely often a∧b

AG(a∧b∧ r→ AX A[(a∨b) U (a∧b)])

(AG r) → AF(a∧b)

Definition f holds in K written K |= f iff s |= f for all s ∈ I generic definition
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all possible orders of events are represented in one (infinite) computation tree

CTL describes the branching behavior of this computation tree

and has a local state view

every state is the starting point of new branching paths
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p p

p
p

p p
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Definition LTL syntax similar to CTL syntax, except that temporal operators do not have
path quantifiers: LTL only has X,F,G and U.

Definition LTL semantics defined recursively along infinite paths π in K:

π |= p iff p ∈ L(π(0))

π |= ¬g iff π 6|= g

π |= g∧h iff π |= g and π |= h

π |= Xg iff π1 |= g

π |= Fg iff πi |= g for one i

π |= Gg iff πi |= g for all i

π |= g U h iff exists i with πi |= h and π j |= g for all j < i

Definition K |= f iff π |= f for all infinite paths π in K with π(0) ∈ I
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• LTL only considers one single linear order of events

• then (Gr)→F(a∧b) suddenly makes sense (premise is a restriction/assumption)

• LTL is compositional (w.r.t. sync. product of Kripke structures):

– K1 |= f1, K2 |= f2 ⇒ K1×K2 |= f1∧ f2

– K1 |= f → g, K2 |= f ⇒ K1×K2 |= g

Proposition CTL and LTL have different expressibility:

AXEXp can not be specified in LTL, AFAGp does not have corresponding LTL formula
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[Clarke and Draghicescu’88]

ACTL is the sub logic of CTL formulas without E path quantifiers in NNF

NNF: negations only occur in front of atomic propositions p ∈ A

Definition for an ACTL formula f define f\A as the LTL formula obtained from f by deleting
all path quantifiers, e.g. (AGAFp)\A = GFp.

Definition f and g are equivalent iff K |= f ⇔ K |= g for all Kripke structures K.

( f and g can be formulas in different logics)

Theorem if an ACTL formula f is equivalent to an LTL formula g, then also to f\A.

Proof K |= f
assumption⇔ ∀π[π |= g]

assumption⇔
+see below

∀π[π |= f ] !⇔ ∀π[π |= f\A]
Def.⇔ K |= f\A

(assume π to be initialized and in π |= f interpreted as Kripke structure)
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[M. Maidl’00]

Let f and g be CTL resp. LTL formulas and p ∈ A .

Definition every sub formula of an CTLdet formula is of the following form:

p, f ∧g, AX f , AG f , (¬p∧ f )∨ (p∧g) or A[(¬p∧ f ) U (p∧g)]

Definition every sub formula of an LTLdet formula is of the following form:

p, f ∧g, X f , G f , (¬p∧ f )∨ (p∧g) or (¬p∧ f ) U (p∧g)

Theorem the intersection of LTL and ACTL is equivalent to LTLdet resp. CTLdet

Intuition CTL semantics for CTLdet are restricted to one path

Hint A[ f U p] ≡ A[(¬p∧ f ) U (p∧1)] AFp ≡ A[1 U p]

⇒ non deterministic specifications can be misinterpreted
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[P. Wolper’83]
Specification “after m-th step p” holds (at least)

Proposition for all m > 1 there is no CTL nor LTL formula f with

K |= f iff π(i) |= p for all initialized paths π of K and all i = 0 mod m.

Problem p∧G(p↔¬Xp) denotes “ exactly every 2nd step p holds”

Solutions

• add modulo m counter to model (problems with compositionality)

• logic extensions

– ETL with additional temporal operators defined through automata . . .

– . . . resp. quantifiers over atomic propositions (embed automata into the logic)

– regular expressions: ¬

(1; . . . ;1︸ ︷︷ ︸
m−1

; p)∗;1; . . . ;1︸ ︷︷ ︸
m−1

;¬p

 resp. (1; . . . ;1︸ ︷︷ ︸
m−1

; p)ω
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• specifications often need additional fairness assumptions

– e.g. abstraction of scheduler: “each process gets it’s turn”

– e.g. one component must be enabled infinitely often

– e.g. infinitely often a transmission channel does not produce an error

• no problem in LTL: (GF f )→G(r→ Fa)

• fair Kripke structures for CTL:

– additional component F of fair states

– path π fair iff |{i | π(i) ∈ F}|= ∞

– only consider fair paths
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• restricted class of quantifiers over sets of states

– quantified variables V = {X ,Y, . . .}

– in general also over sets and thus gives a second order logic

• fix point logic: least fix points specified with µ and largest with ν

• modal µ-calculus as extension of HML resp. CTL

νX [p∧ [ ]X ] ≡ AGp µX [q ∨ (p∧〈 〉X)] ≡ E[p U q]

νX [p∧ [ ] [ ]X ] corresponds to “every 2nd step p holds”

νX [p∧〈 〉µY [( f ∧X)∨ (p∧〈 〉Y )]] ≡ νX [p∧EXE[p U f ∧X ]] ≡ EGp under fairness f
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again over Kripke structures K = (S, I,T,L).

Definition an assignment ρ of variables V is a mapping ρ:V → P(S)

Definition semantics [[ f ]]ρ of a µ-calculus formula f is defined recursively as expansion,
i.e. as set of states in which f holds for a given assignment ρ:

[[p]]ρ = {s | p ∈ L(s)} [[X ]]ρ = ρ(X)

[[¬ f ]]ρ = S\[[ f ]]ρ [[ f ∧g]]ρ = [[ f ]]ρ∩ [[g]]ρ
µX [ f ] =

⋂
{A⊆ S | [[ f ]]ρ[X 7→A] = A} νX [ f ] =

⋃
{A⊆ S | [[ f ]]ρ[X 7→A] = A}

with ρ[A 7→ X ](Y ) =
{

A X = Y
ρ(Y ) X 6= Y

.

Definition K |= f iff I ⊆ [[ f ]]ρ for all assignments ρ

Proposition µ-calculus subsumes CTL and at least theoretically also LTL.
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• Property Specification Language (PSL)

– subsumes CTL, LTL and also regular expressions

– Verilog and VHDL flavor

• System Verilog Assertions (SVA)

– less general than PSL

– closer to Hardware

– part of System Verilog (extension of Verilog)

• verification tools (testing / formal) often come with their own temporal logic
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