Formal Models SS 2016: Assignment 3

Institute for Formal Models and Verification, JKU Linz

Due 07.04.2016

Exercise 9

Given an automation A with state $S = \{A, B, C, D\}$, alphabet $\Sigma = \{a, b\}$, initial states $I = \{A, D\}$, final state $F = \{C\}$, and transitions $T = \{(A, a, A), (A, b, A), (A, b, B), (A, b, C), (B, b, B), (B, b, A), (C, a, A), (C, b, D), (D, a, B), (D, b, B), (D, a, C)\}$. Draw the oracle automaton Oracle(A). Is Oracle(A) complete? Is it deterministic?

Exercise 10

Given FA A from Exercise 9, draw the *optimized* oracle-automaton Oracle(A). Is Oracle(A) complete? Is it deterministic? Justify your answer.

Exercise 11

Given A with states $S = \{A, B, C, D\}$, alphabet $\Sigma = \{a, b\}$, initial/final states $I = \{A, B\}$, $F = \{C\}$, and transitions $T = \{(A, b, A), (A, a, C), (B, a, A), (B, a, B), (B, b, D), (C, b, D), (D, b, B)\}$

Draw the I/O-automaton for FA A.

Exercise 12

Draw an I/O-automaton modelling the digital circuit shown on the right. Use $\Sigma := \Theta := \{0,1\}$ as input- and outputalphabet.

