Formal Models SS 2016: Assignment 5

Institute for Formal Models and Verification, JKU Linz

Due 21.04.2016

Exercise 17 Let P = b.c.P and Q = a.b.Q. Show that action

 $((b.Q+b.a.Q) \mid\mid (b.P+b.c.P)) + (a.Q \mid\mid b.P) \xrightarrow{b} a.Q \mid\mid P$

can be executed by subsequently applying the semantical rules of PA.

Exercise 18

Given a CEN N = (C, I, E, G) with $C = \{r, s, t, u, v, w\}$, $I = \{r, v\}$, $E = \{b, c, d, e\}$, $G = \{(r, b), (b, s), (t, b), (s, c), (c, r), (d, t), (d, u), (u, e), (e, v), (v, d), (w, b), (d, w)\}$.

Draw the CEN N. How many markings are possible on N theoretically?

- a) Draw the CEN N.
- b) Given marking $\{u\}$, what is the marking obtained when event d fires?
- c) Given marking $\{s, t, u\}$, what is the marking obtained when event d fires?
- d) Given marking $\{r, u\}$, what is the marking obtained when event *e* fires?

Exercise 19

Let *L* be the LTS corresponding to the CEN *N* from the previous exercise. Draw *L*. Can a deadlock be reached on *N*? Justify your answer!

Exercise 20 Given PTN N as shown on the right. Justify your answers to the following questions.

- a) Specify *N* formally as 5-tuple N = (P, I, T, G, C) including all of its components.
- b) How many different markings are possible in *N theoretically*?
- c) Is there a marking *M* for *N* such that all transitions are enabled?

