Formal Models SS 2016: Assignment 9

Institute for Formal Models and Verification, JKU Linz

Due 02.06.2016

Exercise 33 Given the Kripke structure *K* shown below.

Given trace π and LTL formula f, decide if f holds in π , i.e., $\pi \models f$.

Trace π	Formula f	yes	no
$5, (3, 4, 1)^{\omega}$	FGr		
$5, 4, 1, (3)^{\omega}$	GFs		
$0,(2)^{\boldsymbol{\omega}}$	$\mathbf{FF}(\neg s)$		
$(0,2,1)^{\boldsymbol{\omega}}$	$\mathbf{G}(\neg r \rightarrow \mathbf{X}s)$		
$(0, 2, 1, 2, 4, 1)^{\omega}$	$\mathbf{F}(p \mathbf{U} s)$		

Exercise 34

For each of the following temporal formulae, check whether there is an equivalent formula in LTL^{det} . If so, then specify such an equivalent formula meeting the syntactic criteria for LTL^{det} as given on lecture slide 69. Note that subformulae p and q are atomic propositions, i.e. $p, q \in \mathcal{A}$.

a) **EF** $p \rightarrow \mathbf{AX} q$

- b) $(\mathbf{AF} p) \wedge \mathbf{AX} \neg p$
- c) $\neg((\mathbf{EX} \neg q) \lor (\mathbf{EF} \neg p))$

Exercise 35

Given Kripke structure K as shown above. Justify your answers to the following questions.

- a) Does $K \models f$ hold for ACTL formula $f := \mathbf{A}\mathbf{X} \ p \lor \mathbf{A}\mathbf{X} \ q$?
- b) Let $g := f \setminus \mathbf{A}$. Does $K \models g$ hold?
- c) Based on the results of a) und b): are f and g equivalent?
- d) Based on the results of a), b) and c): is there an LTL formula which is equivalent to f?

Exercise 36

Given CTL formula $f := \mathbf{AF} (r \to \mathbf{AG} a)$, where *r* and *a* are atomic propositions, i.e. $r, a \in \mathcal{A}$. Draw a Kripke structure *K* with exactly one initial state such that $K \not\models f$ but $K \models f \setminus \mathbf{A}$ (Hint: there is such *K* with no more than 3 states). Is there an LTL formula which is equivalent to *f*? Justify your answers.