Formal Models SS 2017: Assignment 2

Institute for Formal Models and Verification, JKU Linz

Due 23.03.2017

Exercise 5

Given an automation A with state $S = \{A, B, C, D\}$, alphabet $\Sigma = \{a, b\}$, initial states $I = \{A, C\}$, the final states $F = \{B, D\}$, and transitions $T = \{(A, a, B), (A, a, C), (B, a, B), (C, a, C), (C, b, D), (D, b, D), (D, a, B)\}$. Draw the power automaton $\mathbb{P}(A)$ for FA A. What is the maximum number of states $\mathbb{P}(A)$ can have in theory? Justify your answer.

Exercise 6

Draw the automaton K, which describes exactly the complement language described by the automaton of Exercise 5.

Exercise 7

Given FA *A* where $\Sigma := \{a, b\}$ as shown on the right. Draw the oracle-automaton *Oracle*(*A*) as defined on lecture slide 8. For making *Oracle*(*A*) complete by introducing an error state, how many new transitions have to be added?

Exercise 8

Given FA A from the previous exercise, draw the *optimized* oracle-automaton Oracle(A). Is Oracle(A) complete? Is it deterministic? Justify your answer.