Formal Models SS 2020: Assignment 2

Based on Video "Lecture 13. March 2014" on our webpage.

Institute for Formal Models and Verification, JKU Linz

Due 26.03.2020

Guideline:

- To indicate that you solved an exercise, tick it off in our MOODLE course until **10am on the day of the exercise (26.03.2020)**. Unmarking and marking exercises later is **not** possible.
- Upload your solved exercises in the Moodle course. Generate a single PDF file, which contains all solved exercises, your name, and your matriculation number. Upload the PDF file do not generate a ZIP! Not following the format leads to deduction of points!
- We will randomly select and correct solved exercises.
- A sample solution will be provided.

Exercise 5

Draw an FA A with input-alphabet $\Sigma := \{a, b\}$ having *exactly* 3 states such that...

- 1. ... *A* is non-deterministic and incomplete.
- 2. ... *A* is deterministic and incomplete.
- 3. $\ldots A$ is non-deterministic and complete.
- 4. $\ldots A$ is deterministic and complete.

Justify each of your solutions.

Exercise 6

Let $A = (S_1, I_1, \Sigma_1, T_1, F_1)$ be an arbitrary FA. Given the formal definition of an automaton $\mathbb{A}_{\emptyset}(A)$ consisting of the following components:

$$S = S_1 \cup \{\emptyset\} \qquad I = I_1$$

$$\Sigma = \Sigma_1 = \{a, b\} \qquad F = F_1$$

$$T(s, a, s') \quad \text{iff} \qquad T_1(s, a, s') \lor ((\neg(|s \xrightarrow{a}| > 0)) \land s' = \emptyset)$$

Draw $\mathbb{A}_{\emptyset}(A)$ for *A*:

Exercise 7

Draw the power automaton $\mathbb{P}(A)$ for FA *A* as shown on the right. What is the maximum number of states $\mathbb{P}(A)$ can have in theory? Justify your answer.

Exercise 8

Given A with states $S = \{A, B, C\}$, alphabet $\Sigma = \{a, b\}$, initial/final states $I = \{A, B\}$, $F = \{C\}$, and transitions $T = \{(A, a, A), (A, a, B), (B, a, C), (C, a, A), (A, b, B), (B, b, C)\}$. Draw A and draw the automaton K, which describes exactly the complement language to the language described by A.