Abstraction techniques for Floating-Point Arithmetic

Angelo Brillout1, Daniel Kroening2 and Thomas Wahl2

1ETH Zurich, 2Oxford University
Floating-Point Arithmetic (FPA)

- Used for embedded and safety critical systems
- Finite representation of real numbers
 - Rounding
 - Deviation causes unintuitive results
 - Deviation can change control flow
- Behavior of floating-point programs hard to predict
Contributions

→ New effective approximation techniques
 - Over- and underapproximation for FPA
 - Bit-precise

→ Precise and sound decision procedure for FPA:
 - Based on CBMC model checking engine
 - SAT solver as the back-end
Floating-Point Arithmetic (FPA)

- Numerical representation of a subset of the reals
- Floating-point format: IEEE-754 standard
 - Triple \((s, e, f)\) stands for the number \((-1)^s \cdot f \cdot 2^e\)
 - Represented by a bit-vector

\[
\begin{array}{ccccccc}
 s & e_{r-1} & \cdots & e_0 & f_0 & \cdots & f_{p-1} \\
 \downarrow & \downarrow & \cdots & \downarrow & \downarrow & \cdots & \downarrow \\
 1 & r & & & p & & \\
\end{array}
\]

- Representable numbers \(\mathbb{F}_p\)
- Floating-point operations \(\oplus \ominus \circlearrowright\)
 - Differ from real arithmetic. E.g.:
 \[
 (a \oplus b) \oplus c \neq a \oplus (b \oplus c)
 \]
Floating-Point Arithmetic (FPA)

- Result of FP-operation not always representable

→ Approximations:

\[
[x]_p := \max\{f \in \mathbb{F}_p : f \cdot x\}, \quad \text{and}
\]

\[
[x]_p := \min\{f \in \mathbb{F}_p : f \geq x\}.
\]

→ Rounding function:

\[
rd_p(x) \in \{[x]_p, [x]_p\}
\]

- Rounding based on least significant bits of fraction
Floating-Point Arithmetic (FPA)

- Floating-point operations defined as:
 \[x \odot_p y := r d_p (x \odot y) \]

- Verification of FPA programs:
 - Naïve method: Bit-vector model of an FPU and bit-blasting
 - BMC (Unrolling, Bit-blasting, SAT-solving)

→ Does not scale for FPA
FPA Verification

- FPU-Implementation of Add/Sub

 - Align: mantissa shifted, rendering exponents equal
 - Add/Sub: resulting mantissas are added/subtracted
 - Round: shortening mantissa to obtain a number in \mathbb{F}_p
FPA Verification

- FPU-Implementation of Add/Sub

<table>
<thead>
<tr>
<th>Precision</th>
<th>ALIGN</th>
<th>ADD/SUB</th>
<th>ROUND</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = 5</td>
<td>295</td>
<td>168</td>
<td>572</td>
<td>1035</td>
</tr>
<tr>
<td>p = 23</td>
<td>687</td>
<td>420</td>
<td>1447</td>
<td>2554</td>
</tr>
<tr>
<td>p = 52</td>
<td>1404</td>
<td>826</td>
<td>2923</td>
<td>5153</td>
</tr>
</tbody>
</table>
FPA Verification

- FPU-Implementation of Mul/Div

- Add/Sub: exponents added/subtracted (Mul/Div)

- Mul/Div: mantissas multiplied/divided (Mul/Div)
FPA Verification

- FPU-Implementation of Mul/Div

<table>
<thead>
<tr>
<th>Precision</th>
<th>MUL/DIV</th>
<th>ADD/SUB</th>
<th>ROUND</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 5$</td>
<td>280</td>
<td>94</td>
<td>674</td>
<td>1048</td>
</tr>
<tr>
<td>$p = 23$</td>
<td>3898</td>
<td>94</td>
<td>2258</td>
<td>6550</td>
</tr>
<tr>
<td>$p = 52$</td>
<td>19268</td>
<td>94</td>
<td>5742</td>
<td>25104</td>
</tr>
</tbody>
</table>
FPA Verification

→ Need for approximate FP-operations

Can we approximate FP-operations by reducing the precision p ?
Approximation techniques

- Reducing the precision $p' < p$
 - Least significant bits are lost

- Overapproximation by **open** rounding:
 \[\overline{rd}_{p,p'}(X) := \left[\left\lfloor X \right\rfloor_{p'}, \left\lceil X \right\rceil_{p'} \right] \cap \mathbb{F}_p \]

- New FP-operations
 \[X \odot_{p,p'} Y := \overline{rd}_{p,p'}(X \circ Y) \]

- Replace \odot_p by $\overline{\odot}_{p,p'}$ for some precision $p' < p$
Approximation techniques

- Overapproximation: visualization

\[\overline{rd}_{p,p'}(\{x\}) = \left[\left[x \right]_{p'}, \left[x \right]_{p'} \right] \cap \mathbb{F}_p \]

precision \(p' < p \)

\[\overline{rd}_{p,p'}(\{x\}) = \{*,*,*,*,*\} \]
Approximation techniques

- Reducing the precision $p' < p$
 - Least significant bits are lost
- Underapproximation by inhibiting rounding:
 $$r_{d_{p,p'}}(X) := X \cap \mathbb{F}_{p'}$$
- New FP-operations
 $$X \odot_{p,p'} Y := r_{d_{p,p'}}(X \circ Y)$$
- Replace \odot_p by $\odot_{p,p'}$ for some precision $p' < p$
Approximation techniques

- **Underapproximation: visualization**

 \[\overline{rd}_{p,p'}(\{x\}) = \{x\} \cap \mathbb{F}_{p'} \]

 precision \(p' < p \)

 \[\overline{rd}_{p,p'}(\{x\}) = \{x\} \text{ if } x \in \mathbb{F}_{p'}, \emptyset \text{ otherwise} \]
Alternating abstractions for FPA

- **Over-approximation**
 - Permits *more* execution traces than original program
 - SAT: no conclusion, UNSAT: assertions OK

- **Under-approximation**
 - Permits *less* execution traces than original program
 - SAT: assertion violated, UNSAT: no conclusion

- **Refinement:** increase p

→ Alternation yields complete procedure
Alternating abstractions for FPA

Select small precision \(p \)

\[\phi \]

Generate Underapproximation \(\phi \)

(increase \(p \) using \(\alpha \))

\[\alpha \]

\[\phi \]

\(\phi\)

SAT ?

yes

SAT, ass. \(\alpha \)

yes

\(\alpha\) satisfies \(\phi \)

yes (ass. \(\alpha \))

no

\(\phi \)

\(\phi \)

no

(proof \(P \))

P valid for \(\phi \) ?

no

\(\overline{\phi} \)

Generate Overapproximation

(increase \(p \) using \(P \))

\(\phi \)

\(\phi \)

no

\(\overline{\phi} \)

UNSAT, proof \(P \)

no

SAT ?

\(P \) valid for \(\phi \) ?

proof \(P \)

\(\overline{\phi} \)

\(\phi \)
Alternating abstractions for FPA

Refinement for FPA:

- **Spuriously SAT:**

 \[r \text{ result of } \bigcap_{p, p'} \text{. If } r \neq \bigcap_p \text{ then increase precision} \]

- **Spuriously UNSAT:**

 - **Recall:**

 \[\overline{r d}_{p, p'}(X) := X \cap F_{p'} \]

 - If the constraint \(X \cap F_{p'} \) occurs in \(P \), then increase precision
Summary

- Model Checking with FPA
 - Effective over- and underapproximation hard to find
 - Slow (model checking)
 - Fully automatic
 - Provides counterexample

→ Implemented in CBMC
State of the Art

- Proof assistants
 - Very powerful
 - Require interaction
 - No counterexample

- Interval arithmetic \[[1, 2] + [4, 6] = [5, 8] \]
 - Fully automated
 - Too coarse
 - No counterexample
Issues

- E.g. the formula \((a \oplus b) \oplus c \neq a \oplus (b \oplus c)\) is SAT
 - Every overapproximation based on \(\bar{\ominus}\) is SAT
 - Every underapproximation based on \(\ominus\) is UNSAT

\[\rightarrow \text{Some formulae do not have effective over- or underapproximations}\]
Conclusion

- New algorithm for iteratively approximating complex FPA –formulae
 - New under- and over-approximations for FP-operations
- Ability to generate counterexamples
 - Debugging
 - Automated test-vector generation
- Promising experiments, future work

Thank you!