Formal Verification of Analog Designs using MetiTarski

William Denman, Behzad Akbarpour, Sofiène Tahar¹
Mohamed H. Zaki²
Lawrence C. Paulson³

¹Concordia University, Montreal, Canada
²University of British Columbia, Vancouver, Canada
³University of Cambridge, United Kingdom

FMCAD’09
November 17th, 2009
Motivation

Should we *care* about **formal verification** for analog circuits?

Verifiers / Researchers: Yes!

Designers: Not really…

Common motivation
Motivation

- Some interesting statistics [IBS Corporation]
 - Analog Circuitry 2% of the transistor count
 - 20% of the IC Area
 - 40% of the design Effort

Analog verification continues to be a serious bottleneck

50% of the errors that require re-design are from analog circuitry
Motivation

Formal Verification for Analog Circuits?

• Challenges
 – Infinite/Continuous state space
 – Infinite time
 – PVT: Sensitivity to process variation, voltage, temperature
 – Non-linear behaviour

• We propose
 – A time unbounded verification
 – Using MetiTarski: An Automated Theorem Prover
Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans
Related Work

- Balivada [1995]
 - Discretization of a circuit’s transfer function to the Z-domain
 - Apply digital based equivalence checking techniques
- Hartong, Klausen and Hedrich [2004]
 - From analog circuit transfer functions
 - Verify dynamic behaviour of the specification and implementation state spaces.

Presence of tolerance margins
Related Work

- Kurshan and McMillan [1991]
 - State space subdivision of transistor behaviour
 - Predict possible transitions between states

- Gupta [2004], Dang [2006], Frehse [2006], Little [2006], Greenstreet [2007]
 - Reachability relations using projection techniques
 - Over-approximation, but verification still sound

Possible Time Bounded Verification
Related Work

- **Ghosh and Vemuri [1999]**
 - PVS used to prove functional equivalence between models
 - Specification built in VHDL-AMS
 - Approximated DC models

- **Hanna [2000]**
 - Predicates defining voltage and current behaviour
 - Theorem Proving used
 - Conservative approximation

Manual/Heuristic steps
Outline

• Motivation
• Related Work
• Proposed Methodology
• Brief Introduction to MetiTarski
• Illustrative Example
• Conclusion
• Future Plans
Methodology

Specification

Property of Interest

Inequality

Analog Circuit

Closed Form Solution

MetiTarski

Proof generated

Property Verified True

Add Axioms

Range Reduction

Does not terminate

Does not terminate
Methodology

- **Analog circuit specification**
 - Circuit must oscillate
 - Gain for certain frequency range

- **Isolate the property**
 - Oscillation: Is it present?
 - Gain: 3dB Bandwidth

- **Inequality**
 - Voltage < Upper threshold
 - Gain > Minimum Required Value
Methodology

- Analog circuit
 - Differential equations
 - Kirchoff law Equations

- Closed Form Solution
 - Bounded number of analytical functions
 - No differential operators
 - Not always easy to obtain
Methodology

- **Automated Theorem Proving**
 - The axioms are specific mathematical facts
 - Bounding properties
 - Definition of functions

- **Range Reduction**
 - Functions are not defined over all ranges
 - Large bounds cause proof to never end
 - Apply basic trigonometric identities

\[
\cos(x) = \cos(x + 2\pi) \\
\sin(x) = \sin(x + 2\pi)
\]
Outline

• Motivation
• Related Work
• Proposed Methodology
• Brief Introduction to MetiTarski
• Illustrative Example
• Conclusion
• Future Plans
MetiTarski

• Developed by Akbarpour and Paulson ['07]
 – Automated Theorem Prover
 – Transcendental functions (sine, cosine, ln, exp, etc.)
 – Square Root

• Theory behind the tool
 – Resolution prover combined with a decision procedure
 – Decidability of real closed fields (RCF) by Tarski
 – Function families of upper and lower bounds by Daumas and others
MetiTarski Implementation

Resolution Theorem Prover

Metis

Decision Procedure

QEPCAD-B

MetiTarski
• QEPCAD-B
 – Advanced implementation of cylindrical algebraic decomposition
 – Best available decision procedure for RCF
 – Eliminates quantifiers from a formula

$$\exists x. ax^2 + bx + c = 0$$

reduces to

$$(a \neq 0 \land b^2 - 4ac \geq 0) \lor (a = 0 \land b \neq 0) \lor (a = b = c = 0)$$
Example Axiom

- Assuming \(0 \leq x \leq 4 \)
- We are given a function containing \(\exp(x) \)
 - Upper bound axiom is \(\frac{-\left(x^3 + 12x^2 + 60x + 120\right)}{x^3 - 12x^2 + 60x - 120} \)
 - Will usually need more than one axiom
Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans
Example

- PWL: Simplest class of nonlinear circuits
- Behaviour can be reasonably approximated

\[I_D(V_C) = \begin{cases}
0.2616V_C & 0 \leq V_C \leq 0.276 \\
-0.0992V_C + 0.0997 & 0.276 < V_C \leq 0.723 \\
0.2599V_C - 0.1599 & 0.723 \leq V_C < 1.0
\end{cases} \]
Closed Form Solution

ODEs

Piecewise ODEs

Transition Relations

Initial Conditions

MAPLE

M1

M2

M3

Modes of operation

MetiTarski
Closed Form Solution

- Using a computer algebra system
- Piecewise ODEs
 - Separate behaviour of the component into modes
- Transition relations
 - Determined by the piecewise model
- Initial Conditions
 - Dependant on the system specification
Closed Form Solution

- Closed form solution for each mode
- Procedure followed until each mode visited

\[V_D > 0.276 \]
\[V_D \leq 0.276 \text{ V} \]

\[V_D > 0.723 \]
\[V_D \leq 0.723 \text{ V} \]
Closed Form Solution

- Starting with the ODEs of the system

\[
\dot{V}_C = \frac{1}{C}(-I_D(V_C) + I_L)
\]

\[
\dot{I}_L = \frac{1}{L}(-V_C - R \times I_L + V_{in})
\]

- \(I_D(V_C)\) is the current through the tunnel diode
- Inverse Laplace transform taken to get closed form solutions in each mode

\[
V_C(t) = 0.116e^{-2.58 \times 10^8 t} + 0.278 - 0.262e^{-4.19 \times 10^6 t}
\]

\[
I_L(t) = 0.448 \times 10^{-3}e^{-2.58 \times 10^8 t} + 0.0727 - 0.0677e^{-4.19 \times 10^6 t}
\]
Closed Form Solution

• Using the produced solution
 – Fsolve used to compute time when switches modes
 – Mode 1 -> Mode 2 : $V_D > 0.276$

• Initial conditions determined
 – Take solution from Fsolve
 – Use Eval to evaluate function values

• Continue until each mode visited
Verified Properties

- Choose the property of interest
 - Reason about oscillation
 - Reason about bounded behaviour

- Turn into an inequality
 - Non-oscillation: I_L will never pass an **upper bound**
 - Bounded Behaviour: I_L and V_C will remain **bounded**

- Input into MetiTarski
Transform inequality into the MetiTarski syntax
Remember: each mode must be checked

MetiTarski Input

fof(
 Tunnel, conjecture, ![X] :
 (
 (0 <= X & X <= 2.39*10^(-9)) =>
 -0.0059 - 0.00016*exp(-2.55*10^8*X) + 0.031*exp(-5.49*10^7*X) < 0.03
)
).

For All
Time in a specific mode
Mode Switch Time
Closed form solution
Property inequality
Results

• Property 1
 – Non-Oscillation
• In each mode upper threshold not passed
 – I_L: Current through the inductor

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variable</th>
<th>Bound</th>
<th>CPU Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I_L</td>
<td>U</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>I_L</td>
<td>U</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>I_L</td>
<td>U</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Results

Property 2 – Bounded Behaviour

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variable</th>
<th>Bound</th>
<th>CPU Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_C</td>
<td>U</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>V_C</td>
<td>L</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>V_C</td>
<td>U</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>V_C</td>
<td>L</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>V_C</td>
<td>U</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>V_C</td>
<td>L</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>I_L</td>
<td>U</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>I_L</td>
<td>L</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>I_L</td>
<td>U</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>I_L</td>
<td>L</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>I_L</td>
<td>U</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>I_L</td>
<td>L</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- In each mode the current and voltage are bounded.
- Necessary to add axioms in 2 cases.
Verified Results

• Recall the property

Non Oscillation

\(I_L \) will never pass an upper bound
Results

• Applied methodology to a basic OP-AMP

• Required additional method to obtain a closed form solution.
Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans
Conclusion

• Developed a methodology for the **automated verification** of analog designs
 – Algebra system steps are *semi-automated*, but mechanical in nature
 – MetiTarski **completely automated**
 – Most proofs complete quickly

• Applied to several analog circuits
 – Interesting and complex behaviour
 – Two different methods for closed form solutions
Future Plans

• Computing Closed Form Solutions
 – Investigate methods for solving nonlinear ODEs

• Scale to Larger Problems
 – Efficient methods for calculating piecewise linear functions
 – Apply methodology to more precise models
Thank You!

More details at: hvg.ece.concordia.ca