Structure-aware computation of predicate abstraction

A. Cimatti, J. Dubrovin, T. Junntila, M. Roveri
Fondazione Bruno Kessler, Trento, Italy
Helsinki Institute of Technology, Finland
Predicate abstraction

- Concrete program C over states S
- Predicates Ψ_i induce partition over S
- Each partition is a state of the abstract program
- Transitions in abstract space
 - from as to as' iff c-transition from cs to cs', with cs in as, and cs' in as'
Predicate abstraction: symbolic view

- Concrete state as assignment to X variables
 - booleans, bit vectors, reals, integers, ...
- Concrete program as SMT formula $CR(X, X')$
- Abstract state as assignment to boolean variables P_i
- Predicates as SMT formulae $\Psi_i(X)$
- Abstraction function $\text{Abstr}(X, X' \ P P')$ as $\bigwedge_i P_i \leftrightarrow \Psi_i(X)$

Computing predicate abstraction:
- Obtain a boolean representation for $AR(P, P')$
- Amenable to symbolic model checking

$\begin{align*}
AR(P, P') &= \exists X X'. (CR(X, X') \land \bigwedge_i P_i \leftrightarrow \Psi_i(X) \\
& \quad \land \bigwedge_i P'_i \leftrightarrow \Psi_i(X'))
\end{align*}$
From Q-SMT to Boolean

\[\exists X X' \]

\[\Phi(X X' P P') \]

\[\Phi_B(P P') \]

- Predicate Abstraction
 - at the core of many verification approaches
 - often a bottleneck
Avoid Monolithic Computation

\[\exists X, X' \in \Phi(XX'PP') \]

Reduce

Abstract

Abstract

Abstract

\[\Phi_B(PP') \]

Structure-aware abstraction

FMCAD'09, Austin, TX
Structure-aware predicate abstraction

• New procedure for predicate abstraction

• Exploits the available problem structure

• At the high level
 – structure of system being abstracted
 – modules, scope of variables, nature of transitions

• At the low level
 – structure of quantified formula
 – reduce scope of quantification
High level framework

- System structured in several components
- Asynchronously composed via interleaving
- Transitions:
 - local transitions
 - synchronizing transitions
 - timed transitions

Invariants: x in $[10, 20]$
SMT: $10 \leq x \& x \leq 20$

Flow condition: $\text{der}(x)$ in $[1.1, 1.3]$
SMT: $x + 1.1 \cdot \delta \leq x' \& x' \leq x + 1.3 \cdot \delta$

Global: the same δ for all components!
Predicate abstraction procedure

• Ingredients
 – disjunctively partitioning the concrete program
 – inlining
 – clustering
 – blocking and restricting models
 – value sampling
Disjunctive Partitioning

- \(\text{AR}(P P') = \exists X X'.(\text{CR}(X X') \land \text{Abstr}(X X' P P')) \)
- Present CR as disjunction of
 - \(V_m V_l E_t(X X') \) local transitions
 - \(V_{m,m'} E_{\sigma}(X X') \) synchronizing transitions
 - \(V_l E_{\delta}(X X') \) timed transitions
- Distribute \(\text{Abstr}(X X' P P') \) over disjuncts
- Push Quantification inside disjunction
- \(\text{AR}(P P') = \)
 - \((V_m V_l \exists X X'.(E_t(X X') \land \text{Abstr}(X X' P P')))) \lor \)
 - \((V_{m,m'} \exists X X'.(E_{\sigma}(X X') \land \text{Abstr}(X X' P P')))) \lor \)
 - \(V_l \exists X X'.(E_{\delta}(X X') \land \text{Abstr}(X X' P P'))) \)
Abstracting one transition

- During transitions, several components may not change
- In local transitions
 - only active process is modified
 - \(\text{loc}' = \text{loc}, \ x' = x, \ldots \)
- Synchronizing transitions
 - similarly, only active processes change
- Timed transitions
 - discrete locations do not change
- Lots of potential for inlining
Rules for inlining

- $\exists X. (\beta \land (u=\alpha))$ rewrites to $\exists X. (\beta[u/\alpha])$
 - where u in X, and not in α

- $\exists X. (\beta \land (q \leftrightarrow \alpha))$ rewrites to $(q \leftrightarrow \alpha) \land \exists X. (\beta[q/\alpha])$
 - where α propositional, and q not in α

- $\exists X. (\beta \land (\gamma \leftrightarrow \alpha))$ rewrites to $\exists X. (\beta[\gamma/\alpha]) \land (\gamma \leftrightarrow \alpha))$
 - where α propositional but γ has vars in X
Practical Limitations

• Variable in one component may be referred to in flow conditions of other components
 – this indirectly influences its behaviour.

• Predicates can introduce correlations that are not directly present in the original system
 – e.g. \((x + y < 10)\) connects \(x\) and \(y\)
Clustering

- $\exists X. (\Phi_1(X_1 P) \land \Phi_2(X_2 P) \land \ldots \land \Phi_n(X_n P))$
- Each variable in X occurs in at most one of the clusters X_i
- Each cluster can be dealt with independently
- Trade one big quantification for many (hopefully smaller) quantifications

$(\exists X_1.\Phi_1(X_1 P)) \land (\exists X_2.\Phi_2(X_2 P)) \land \ldots \land (\exists X_n.\Phi_n(X_n P))$
Blocking and Restricting Models

- When computing $\Phi_B(P) \lor \exists X.\Phi(XP)$
- Replace $\exists X.\Phi(XP)$ with $\exists X.(\neg\Phi_B(P) \land \Phi(XP))$
- Rationale
 - boolean reasoning cheaper than SMT reasoning
 - models in Φ_B have already been visited
 - force exploration to other models within $\neg\Phi_B$

- When computing
 - $\Phi_{B0}(P) \land \exists X_1.\Phi_1(X_1P) \land \exists X_2.\Phi_2(X_2P) \land \ldots \land \exists X_n.\Phi_n(XnP)$
- We can use previously computed conjuncts to prune quantification
 - $\exists X_1.(\Phi_1(X_1P) \land \neg\Phi_{B0}(P))$
 - $\exists X_2.(\Phi_2(X_2P) \land \neg\Phi_{B01}(P))$
 - $\exists X_3.(\Phi_3(X_3P) \land \neg\Phi_{B012}(P))$
- Restrict to models still worth exploration
Variable Sampling

- "Quasi clustering": a single w prevents clustering
 - $\exists X.(\Phi_1(w \, X_1 \, P) \land \Phi_2(w \, X_2 \, P) \land \ldots \land \Phi_n(w \, X_n \, P))$
- Pick one value c for w, replace, and cluster
 - $\exists X\backslash w.(\Phi_{1,w/c}(X_1 \, P) \land \Phi_{2,w/c}(X_2 \, P) \land \ldots \land \Phi_{n,w/c}(X_n \, P)$
- Result: underapproximation $\Phi_{w/c}(P)$
 - computed one cofactor with respect to $w = c$
 - we have to cover the case $w \neq c$
 - $\exists X.(w \neq c \land \Phi_1(w \, X_1 \, P) \land \Phi_2(w \, X_2 \, P) \land \ldots \land \Phi_n(w \, X_n \, P))$
- The process can be iterated
 - need to block already covered models
 - need to find a suitable sequence of instantiations
Sampling-driven quantification

SamplingAllSMT(\(\Phi, X, W\)) {
 res := False;
 (sat, mu) := SMTSolve(\(\Phi\));
 while sat do
 c := PickValue(mu, W);
 new := AllSMT(not res and \(\Phi[W / c]\));
 res := res or new;
 (sat, mu) := SMTSolve(\(\Phi and not res\));
 end while
 return res;
}
Implementation

• Extended NuSMV
 – empowered with SMT functionalities
 – types: reals, integers, bit-vectors, …
• MathSAT SMT solver used as backend
• High level simplifications
 – network of automata
 – python script to generate disjunctive partitioned representation
• Low level simplifications as rewriter over quantified formulae
• Abstraction based on AllSMT version of MathSAT
Experimental Set up

• Two classes of problems
 – from HyTech distribution
 – randomly generated networks of automata

• Compared Algorithms
 – mono
 – + partitioning
 – + clustering
 – + v-sampling
Results on Hytech models

| Model | $|\bar{P}|$ | $|\bar{V}|$ | disj | computation time (s) | sampling |
|------------------|---------|---------|-----|----------------------|----------|
| | | | | monol. | partit. | clust. | sampl. |
| | | | | | | | |
| active | 34 | 5 | 27 | 54.626 | 18.847 | 2.410 | 0.937 |
| active-trace | 34 | 7 | 27 | 51.781 | 22.171 | 2.473 | 0.952 |
| audio | 30 | 6 | 15 | 13.826 | 4.547 | 0.448 | 0.442 |
| audio-timing | 29 | 7 | 15 | 10.910 | 3.915 | 0.947 | 0.690 |
| billiard-timed | 25 | 3 | 5 | 0.910 | 0.732 | 0.732 | 1.044 |
| dist-controller | 8 | 7 | 12 | 0.320 | 0.232 | 0.195 | 0.147 |
| grc-ver | 24 | 5 | 11 | 33.068 | 19.599 | 10.421 | 0.455 |
| new-grc | 22 | 5 | 11 | 38.649 | 17.840 | 7.395 | 0.383 |
| railroad | 16 | 3 | 8 | 0.170 | 0.140 | 0.131 | 0.112 |
| reactor-clock | 19 | 4 | 5 | 0.181 | 0.133 | 0.069 | 0.050 |
| reactor-rect | 17 | 4 | 5 | 0.132 | 0.112 | 0.051 | 0.045 |
Results on Random LHA's
Related Work

- Imprecise techniques
 - Cartesian Abstraction
- Boolean Quantification
 - BDD-based
 - SAT-based
- Monolithic SMT-based predicate abstraction
 - AllSMT [CAV06]
 - BDD + SMT [FMCAD07]

- Software model checking: BLAST, SATABS
 - Partitioning transition by transition in CFG
 - Forward image computations by inlining unmodified variables

- Avoid abstraction computation
 - Directly compute abstract violations [FM09]
 - No need for AllSMT functionality
Conclusions

• A structure-aware procedure for the exact computation of predicate abstraction

• Exploit high level structure
 – transition partitioning
 – variable scope

• Exploit low level structure
 – formula quantification, clustering
 – value sampling

• Significant speed-ups
Future Work

• Comprehensive comparison with other methods
 – Experiment with BDD-based abstraction
• Measure impact on CEGAR loop
• Application to post-image computation
 – Reachability in abstract space
• Full incrementality