Connecting Pre-silicon and Post-silicon Verification

Sandip Ray and Warren A. Hunt, Jr.
Department of Computer Sciences
University of Texas at Austin
{sandip, hunt}@cs.utexas.edu
http://www.cs.utexas.edu/users/{sandip, hunt}
Motivation

Formal analysis has shown promise in increasing reliability of computing systems.

- Can catch “high quality” bugs that are difficult to hit during simulation.
- Has been successfully applied to some industrial design components.
 - FP execution units
 - Control logic for out-of-order pipelines

But formal analysis has primarily been restricted to pre-silicon

- Typical targets are RTL models and netlists.
- Almost no connection with post-silicon verification.

How do we make use of formal analysis to facilitate post-silicon design verification?
Post-silicon verification is the use of pre-production, physical circuits to determine logical bugs.

- Simulation speed may be 1,000,000,000 times faster than pre-silicon.
- Facilitates exploration of very deep states.

BUT

Control is limited.
Observability is extremely limited.

Factors limiting observability:
- Limited number of pins
- Cost of additional DFD logic.
...
Post-silicon verification is extremely expensive and tedious.

Ray and Hunt (UT Austin)

Post-silicon verification is the use of pre-production, physical circuits to determine logical bugs.

- Simulation speed may be 1,000,000,000 times faster than pre-silicon.
- Facilitates exploration of very deep states.

BUT

- Control is limited.
- Observability is extremely limited.

Factors limiting observability:
- Limited number of pins
- Cost of additional DFD logic.
- ...
Post-silicon verification is the use of pre-production, physical circuits to determine logical bugs.

- Simulation speed may be $1,000,000,000$ times faster than pre-silicon.
- Facilitates exploration of very deep states.

BUT

- Control is limited.
- Observability is extremely limited.

Factors limiting observability:
- Limited number of pins
- Cost of additional DFD logic.
- ...

Post-silicon verification is extremely expensive and tedious.
Post-silicon Debug Process

- Start in a known state
- Quickly get to a deep state
- Continue until a bug occurs
 - Bug is unobserved
 - Bug may lay dormant
- Finally, observe a problem

It can take substantial effort to find and fix a bug.
Post-silicon Debug Process

- Start in a known state
- Quickly get to a *deep* state
- Continue until a bug occurs
 - Bug is unobserved
 - Bug may lay dormant
- Finally, observe a problem

It can take substantial effort to find and fix a bug.

Typical Approach: Add extra hardware “hook” to improve observability.
- But the hooks are added on-demand without analysis of design invariants.
- Once added, they are carried over from one design to next.
Post-silicon Debug Process

- Start in a known state
- Quickly get to a *deep* state
- Continue until a bug occurs
 - Bug is unobserved
 - Bug may lay dormant
- Finally, observe a problem

It can take substantial effort to find and fix a bug.

Typical Approach: Add extra hardware “hook” to improve observability.

- But the hooks are added on-demand without analysis of design invariants.
- Once added, they are carried over from one design to next.

A more disciplined process of on-chip instrumentation is necessary.
Facilitate post-silicon verification by pre-silicon analysis.
Our Goal

Facilitate post-silicon verification by pre-silicon analysis.

Pre-silicon Models

- Allow complete visibility of internal state.
- Can be mathematically formalized analyzed and reasoned about.
Facilitate post-silicon verification by pre-silicon analysis.

Pre-silicon Models
• Allow complete visibility of internal state.
• Can be mathematically formalized analyzed and reasoned about.

We use pre-silicon analysis to determine post-silicon observation points.
• Exploit the connection between pre- and post- silicon models.
• The number of observation points depends on the desired logical guarantee
Our Goal

Facilitate post-silicon verification by pre-silicon analysis.

Pre-silicon Models
- Allow complete visibility of internal state.
- Can be mathematically formalized analyzed and reasoned about.

We use pre-silicon analysis to determine post-silicon observation points.
- Exploit the connection between pre- and post- silicon models.
- The number of observation points depends on the desired logical guarantee.

Eventual goal is a post-silicon verification methodology that
- provides high correctness assurance.
- helps comprehend post-silicon execution results.
- provides clear trade-offs between logical guarantees and DFD support.
We envision a single, unified, formal framework for specification, evaluation, and verification of computing systems.
An Approach: Partition Trace Analysis

Partition post-silicon trace analysis into two components.

- small on-chip **integrity unit** that has full observability
- an off-chip **partial trace analyzer**

The off-chip component can assume that in-silicon analysis has succeeded.

Formal analysis guarantees that the components together are equivalent to a monitor that has full observability.

We applied the partitioning approach for post-silicon analysis of a multiprocessor memory system.
The pre-silicon monitor checks for bounded coherence.

- Has **full observability** of all bus transactions.
- Obviously impractical for post-silicon.
A post-silicon trace is a subsequence of a pre-silicon trace with lossy compression.

- The integrity unit keeps track of internal bus transactions.
- It is sufficient to externally observe only a small number of critical events.
Theorem. If the integrity unit does not interrupt, then any post-silicon trace that passes the post-silicon analysis is a subsequence of a trace that would pass pre-silicon analysis under full observability.

The theorem is proven in ACL2.

- Makes use of underlying protocol invariants.
Theorem. If the integrity unit does not interrupt, then any post-silicon trace that passes the post-silicon analysis is a subsequence of a trace that would pass pre-silicon analysis under full observability.

The theorem is proven is ACL2.

- Makes use of underlying protocol invariants.
- Proven by exploiting a decidable subclass of the logic.
Theorem. If the integrity unit does not interrupt, then any post-silicon trace that passes the post-silicon analysis is a subsequence of a trace that would pass pre-silicon analysis under full observability.

The theorem is proven in ACL2.

- Makes use of underlying protocol invariants.
- Proven by exploiting a decidable subclass of the logic.

The theorem formally connects post-silicon verification with pre-silicon analysis.
The system can identify subtle design errors.
The system can identify subtle design errors.

Such errors are very difficult to exercise in simulation because of the non-determinism in the protocol.
Using the System

The system can identify subtle design errors.

Such errors are very difficult to exercise in simulation because of the non-determinism in the protocol.

The system identifies the error even under very poor observability.
Related Work

- **Gopalakrishnan and Chou**: Limited observability checkers based on constraint solving and abstract interpretation.
- **Aschlager and Wilkins**: Model checking to generate a short trace containing an observed bug.
- **Safarpour et al.**: SAT solving to automatically find and repair stuck-at faults.
- **De Paula et al.**: SAT solving to develop a “backspace” from a crashed state.

Our approach is to introduce some of the analysis or checking into the silicon.
To our knowledge our work is the first effort on connecting pre-silicon and post-silicon verification through formal proofs.

- Provides a flexible mechanism for making use of pre-silicon analysis in post-silicon verification.
- Makes use of *existing* design artifacts to facilitate post-silicon analysis.

Of course, the results are preliminary.

Future work:
- Exploit information flow for automatic signal winnowing.
- Automate partitioning, given an observability and hardware bound.
- Tighten connection between pre-silicon and post-silicon.
- Exploit faster post-silicon simulation to facilitate pre-silicon analysis.
To our knowledge our work is the first effort on connecting pre-silicon and post-silicon verification through formal proofs.

- Provides a flexible mechanism for making use of pre-silicon analysis in post-silicon verification.
- Makes use of existing design artifacts to facilitate post-silicon analysis.

Of course, the results are preliminary.

Future work:

- Exploit information flow for automatic signal winnowing.
- Automate partitioning, given an observability and hardware bound.
- Tighten connection between pre-silicon and post-silicon.
 - Exploit faster post-silicon simulation to facilitate pre-silicon analysis.