Retiming and Resynthesis with Sweep Are Complete for Sequential Transformations

Hai Zhou
EECS
Northwestern University

Nov. 18, 2009
The Transformations

Retiming

Relocate registers from fanins of a subcircuit to fanouts, or vice versa.
Retiming
Relocate registers from fanins of a subcircuit to fanouts, or vice versa.

Resynthesis (aka Combinational Synthesis)
Restructure combinational circuit without changing its function.
The Transformations

Retiming
Relocate registers from fanins of a subcircuit to fanouts, or vice versa.

Resynthesis (aka Combinational Synthesis)
Restructure combinational circuit without changing its function.

Sweep (aka Register Sweep)
Remove registers not observable by output.
The Transformations

Retiming
Relocate registers from fanins of a subcircuit to fanouts, or vice versa.

Resynthesis (aka Combinational Synthesis)
Restructure combinational circuit without changing its function.

Sweep (aka Register Sweep)
Remove or **insert** registers not observable by output.
Iterative retiming and resynthesis [Malik et al. 90] provide a powerful structural transformation.
Iterative retiming and resynthesis [Malik et al. 90] provide a powerful structural transformation.

Retiming gives combinational synthesis larger subcircuit to restructure.
Iterative retiming and resynthesis [Malik et al. 90] provide a powerful structural transformation

Retiming gives combinational synthesis larger subcircuit to restructure

Resynthesis gives retiming more signals to put registers on
Iterative retiming and resynthesis [Malik et al. 90] provide a powerful structural transformation.
Retiming gives combinational synthesis larger subcircuit to restructure.
Resynthesis gives retiming more signals to put registers on.

How Powerful are Retiming and Resynthesis?
Are they complete for all sequential transformations?
A circuit transformed by retiming is steady state equivalent to original circuit.
A circuit transformed by retiming and resynthesis is steady state equivalent to original circuit.
A Little Bit History

Leiserson & Saxe 83
A circuit transformed by retiming and resynthesis is steady state equivalent to original circuit.

Malik et al. 90
Asking whether reverse is true, proved that any state re-encoding can be done by RnR.
A Little Bit History

Leiserson & Saxe 83
A circuit transformed by retiming and resynthesis is steady state equivalent to original circuit.

Malik et al. 90
Asking whether reverse is true, proved that any state re-encoding can be done by RnR.

Malik 90
Proved (wrongly) that any cycle-preserving (CP) transformation can be done by RnR.
Zhou, Singhal, Aziz 98

Showed that there are equivalent (and CP) circuits that cannot be transformed by RnR.
Zhou, Singhal, Aziz 98

Showed that there are equivalent (and CP) circuits that cannot be transformed by RnR.
Somenzi suggested sweep to get it done.
Zhou, Singhal, Aziz 98

Showed that there are equivalent (and CP) circuits that cannot be transformed by RnR.
Somenzi suggested sweep to get it done.

Ranjan et al. 98

Corrected Malik’s result to transformations only by 1-step merging, splitting, or switching.
A Little Bit History

Zhou, Singhal, Aziz 98
Showed that there are equivalent (and CP) circuits that cannot be transformed by RnR.
Somenzi suggested sweep to get it done.

Ranjan et al. 98
Corrected Malik’s result to transformations only by 1-step merging, splitting, or switching.

Jiang & Brayton 06
RnR are exactly transformations by a sequence of 1-step merging and splitting.
Main Result

Theorem

Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations
Main Result

Theorem

Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations if one-cycle reachability is allowed in synthesis.
Zhou, Singhal, Aziz 98

Proved that steady state equivalence checking is PSPACE-complete; but conjectured RnR checking is easier.

Jiang & Brayton 06

Proved that RnR checking is also PSPACE-complete, disproving the conjecture.

We point out in paper Re-encoding checking is PSPACE-hard, but the complexity of RnR checking is still open.
Zhou, Singhal, Aziz 98

Proved that steady state equivalence checking is \textit{PSPACE-complete}; but conjectured RnR checking is easier.

Jiang & Brayton 06

Proved that RnR checking is also \textit{PSPACE-complete}, disproving the conjecture.
Verification Side of Story

Zhou, Singhal, Aziz 98
Proved that steady state equivalence checking is PSPACE-complete; but conjectured RnR checking is easier.

Jiang & Brayton 06
Proved that RnR checking is also PSPACE-complete, disproving the conjecture.

We point out in paper
Re-encoding checking is PSPACE-hard, but the complexity of RnR checking is still open.
Circuits Demonstrating Incompleteness of RnR

first pair

second pair

Hai Zhou EECS Northwestern University

Retiming and Resynthesis with Sweep Are Complete for Sequential Transformations

Nov. 18, 2009
Sweep is Necessary

Hai Zhou EECS Northwestern University (Retiming and Resynthesis with Sweep Are Co... Nov. 18, 2009 9 / 19
Is Sweep Sufficient?
Is Sweep Sufficient?

Re-encoding with different length is needed!
Is Sweep Sufficient?

Warning

Re-encoding with different length is needed!
Is RnR Complete for Re-encoding with Different Length?

Proof Sketch

\[f^{-1}C_{\text{in}}O_{\text{out}} = \text{on bits} \]

\[f^{-1}C_{\text{in}}O_{\text{out}} = \text{m bits} \]

\[f^{-1}C_{\text{in}}O_{\text{out}} = \text{n bits} \]

Hai Zhou, EECS, Northwestern University

(Retiming and Resynthesis with Sweep Are Complete for Sequential Transformations)

Nov. 18, 2009
Is RnR Complete for Re-encoding with Different Length?

Proof Sketch

![Diagram](image-url)
Extra shadow states are introduced:

- 000
- 001
- 010
- 011
Extra shadow states are introduced:

- They cannot be generated by 1-step mergings or splittings!
Extra shadow states are introduced:

They cannot be generated by 1-step mergings or splittings!

Contradicting w/ Jiang & Brayton 06

What is wrong?
Observation

Treating Boolean functions as abstract discrete functions turns to boast the power of synthesis!

A discrete function may have a range of $2^n + 1$ symbols, but a corresponding Boolean one will have 2^{n+1} values.
One-Cycle Reachability (OCR)

We need to look into previous cycle to find the domain of f^{-1} which was the range of f!
One-Cycle Reachability (OCR)

We need to look into previous cycle to find the domain of f^{-1} which was the range of f!

Lemma

Without OCR, RnR is not complete for transforming between two given circuits that are re-encodings with different code lengths.
The existence of refinement mappings, TCS, 82(2), 1991

Under three general hypotheses about the specifications, if S_1 implements S_2 then one can add auxiliary history and prophecy variables to S_1 to form equivalent specification S_1^{hp} and find a refinement mapping from S_1^{hp} to S_2.
Completeness for Sequential Transformation

Theorem

Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations, if OCR is allowed.

Proof.

1. Circuits C and D are steady state equivalent \Rightarrow every steady state of C maps to at least one D state.
2. Use sweep (inverse) to add registers in C to make an “onto” refinement function F from C states to D states (Abadi & Lamport 91)
3. Bypass signals to make F into a bijection
4. Resynthesis $F^{-1} \circ F$ at the register output of C
5. Retime registers to outputs of F
6. Resynthesis with OCR
7. Sweep to remove unobservable registers to get D
Theorem

Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations, if ORC is allowed.
Completeness for Sequential Transformation

Theorem
Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations, if OCR is allowed.

sweep⁻¹

resynthesis
Completeness for Sequential Transformation

Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations, if OCR is allowed.
Completeness for Sequential Transformation

Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations, if OCR is allowed.
Completeness for Sequential Transformation

Theorem: Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations, if ORC is allowed.

resynthesis – OCR

sweep

Hai Zhou EECS Northwestern University (Retiming and Resynthesis with Sweep Are Co... Nov. 18, 2009 17 / 19
Completeness for Sequential Transformation

Theorem
Retiming and Resynthesis with Sweep are complete for steady state equivalent sequential transformations, if ORC is allowed.

Retiming and Resynthesis with Sweep Are Complete for Sequential Transformations

C
V
c
I
O
C
V
c
I
O
H
V
h
C
V
c
O
H
V
h
F
F
-1
C
V
c
O
H
V
d
F
F
-1
C
V
c
I
O
D
V
d
I
D
V
d
I
O
sweep

synthesis – OCR

sweep

Hai Zhou EECS Northwestern University (Retiming and Resynthesis with Sweep Are Complete for Sequential Transformations)

Nov. 18, 2009 17 / 19
Implications and Future Work

- RnR-Sweep provide powerful sequential transformations, thus need to be developed as a main sequential optimization tool.
Implications and Future Work

- RnR-Sweep provide powerful sequential transformations, thus need to be developed as a main sequential optimization tool.
- OCR needs to be used commonly.
Implications and Future Work

- RnR-Sweep provide powerful sequential transformations, thus need to be developed as a main sequential optimization tool.
- OCR needs to be used commonly.
- Efficiently verifiable subset of RnR-Sweep transformations?
Implications and Future Work

- RnR-Sweep provide powerful sequential transformations, thus need to be developed as a main sequential optimization tool.
- OCR needs to be used commonly.
- Efficiently verifiable subset of RnR-Sweep transformations?
- How powerful are RnR-Sweep without OCR?
Implications and Future Work

- RnR-Sweep provide powerful sequential transformations, thus need to be developed as a main sequential optimization tool.
- OCR needs to be used commonly.
- Efficiently verifiable subset of RnR-Sweep transformations?
- How powerful are RnR-Sweep without OCR?
- What is complexity of RnR equivalence checking?
Q & A