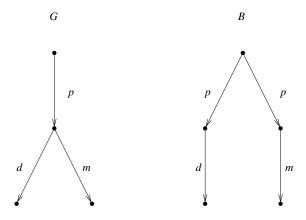
- semantisches Modell im Kontext von Process Algebra
 - Fokus auf Reaktive Systeme oder Offene Systeme
 - dabei Konzept der **Umgebung** mit **externen** Ereignissen
 - Implementierung (auf einer Abstraktionsebene) bestimmt die **internen** Ereignisse
- ein LTS $A = (S, I, \Sigma, T)$ ist im wesentlichen ein EA:
 - das Verhalten, die Möglichkeit von Übergängen zählt
 - ohne Final-Menge, d.h. auch ohne "explizite" Sprache
 - "implizite" Sprache L(A) durch F = S

Sprachäquivalenz Inadequat

- sicherlich sollte die Semantik der beiden LTS "unterschiedlich" sein
 - G erlaubt nach dem Geldeinwurf Wahl der Schokoladenart
 - B setzt nicht-deterministisch beim Geldeinwurf die Schokoladenart fest
- aber *B* und *G* sind **sprachäquivalent**:
 - $-L(B) = p \cdot (d \mid m) = L(G)$
- Problem überträgt sich auf Konformitäts-Test:
 - Sprach-basierter Konformitäts-Test identifiziert B und G
 - Sprach-Konformität ignoriert das "Branching-Verhalten"



Einwurf des Geldbetrages (pay)

Auswahl und Ausgabe der dunklen Schokolade

Auswahl und Ausgabe der Milch-Schokolade

Intuition des Simulationsbegriffes

- Verhalten der Implementierung A₁ sollte gültiges Verhalten der Spezifikation A₂ sein
 - jeder Übergang in A_1 hat eine Entsprechung in A_2
 - A₂ simuliert A₁
 - A2 kann möglicherweise mehr
- Vereinfachung der formalen Notation durch Vereinigung zu einem LTS A
 - gemeinsames Alphabet Σ
 - (disjunkte) Vereinigung der anderen Komponenten:

$$S = S_1 \cup S_2, I = I_1 \cup I_2, T = T_1 \cup T_2$$

- Schreibweise: $A = A_1 \dot{\cup} A_2$

Definition eine Relation $\lesssim \subseteq S \times S$ über LTS A ist eine **Simulation** gdw.

(man ließt $s \lesssim t$ als t simuliert s)

$$s \lesssim t$$
 dann $\forall a \in \Sigma, s' \in S [s \xrightarrow{a} s' \Rightarrow \exists t' \in S [t \xrightarrow{a} t' \land s' \lesssim t']]$

Fakt es gibt genau eine maximale Simulation über jedem LTS A

Beweisskizze (S endlich)

- die Vereinigung zweier Simulationen ist wiederum eine Simulation
- die Menge der Simulationen über A ist nicht leer (enthält die Identität)

Beweis Konstruktion liefert Maximale Simulation sim 7 Systemtheorie 1 - Formale Systeme 1 #342234 - WS 2006/2007 - Armin Biere - JKU Linz - Revision: 1.5

Sei \lesssim eine Simulation. Zeige \lesssim \subseteq \lesssim_i durch Induktion über i.

Induktionsanfang ist trivial, Induktionsschritt folgt.

Annahme (indirekter Beweis): $\lesssim \not\subseteq \lesssim_{i+1}$.

Dann gibt es s und t mit $s \lesssim t$ aber $s \not\lesssim_{i+1} t$.

Somit muss es s' und a geben mit $s \stackrel{a}{\to} s'$, aber $t \not\stackrel{q}{\to} t'$ oder $t \not\lesssim_{;} t'$ für alle t'.

 $\text{Mit der Induktionshypothese} \lesssim \; \subseteq \; \lesssim_{_{i}} \; \text{folgt:} \quad t \not \stackrel{q}{\Rightarrow} t' \; \text{oder} \; t \not \lesssim t' \; \text{für alle} \; t'.$

Widerspruch zur Voraussetzung ≤ Simulation.

- Ausgangspunkt: $\lesssim_0 = S \times S$ (normalerweise keine Simulation)
- verfeinere $\lesssim_i zu \lesssim_{i+1}$ wie folgt

$$s \lesssim_{i+1} t \quad \text{gdw.} \quad s \lesssim_{i} t \quad \text{und} \quad \forall a \in \Sigma, \ s' \in S \ [s \xrightarrow{a} s' \ \Rightarrow \ \exists \ t' \in S \ [t \xrightarrow{a} t' \ \land \ s' \bigg| \lesssim_{i} t']]$$

- bei endlichem S gibt es ein n mit $\lesssim_n = \lesssim_{n+1}$
 - $-\lesssim_{n}$ ist offensichtlich eine Simulation
 - Maximalität schwerer einzusehen
- kann als Fixpunkt-Prozess reformuliert werden

Weitere Fakten über Simulationen sim Systemtheorie 1 – Formale Systeme 1 #342234 – WS 2006/2007 – Armin Biere – JKU Linz – Revision: 1.5

Fakt maximale Simulation ist eine Halb-Ordnung (insbesondere transitiv)

Beweisskizze

- Reflexivität siehe vorige Beweisskizze
- Transitivität folgt aus unterem Lemma

Lemma transitive Hülle einer Simulation ist wieder eine Simulation

Beweisskizze folgender Operator erhält die Simulationseigenschaft

$$\Psi: P(S \times S) \to P(S \times S)$$
 $\Psi(\lesssim)(r,t)$ gdw. $r \lesssim t$ oder $\exists s [r \lesssim s \land s \lesssim t]$

Definition LTS A_2 simulation \lesssim über $A_1 \cup A_2$ gibt, so dass für jeden Anfangszustand $s_1 \in S_1$ von A_1 , es einen Anfangszustand $s_2 \in S_2$ von A_2 gibt, mit $s_1 \lesssim s_2$. Man schreibt dann auch $A_1 \lesssim A_2$.

Fakt Simulation von LTS ist eine Halb-Ordnung (insbesondere transitiv)

Beweisskizze

- bilde maximale Simulationsrelation über alle drei LTS
- zeige Existenz von simulierenden Anfangszuständen
- Projektion auf äussere LTS liefert gewünschte Simulation

Schwache Simulation

- $\tau \in \Sigma$ bezeichnet ein nicht beobachtbares *internes Ereignis*
- vorherige Definition der Simulation ist dann eine starke Simulation

$$s \lesssim t$$
 dann $\forall a \in \Sigma, s' \in S [s \xrightarrow{a} s' \Rightarrow \exists t' \in S [t \xrightarrow{a} t' \land s' \lesssim t']]$

• man schreibe $s \stackrel{\tau^*a}{\rightarrow} t$ falls es s_0, \dots, s_n gibt mit

$$s = s_0 \xrightarrow{\tau} s_1 \xrightarrow{\tau} \cdots \xrightarrow{\tau} s_{n-1} \xrightarrow{a} s_n = t$$

eine Relation ≤ ist eine schwache Simulation gdw.

$$s \lesssim t \quad \text{dann} \quad \forall a \in \boxed{\Sigma \setminus \{\tau\}}, \ s' \in S \ [s \overset{\tau^*a}{\to} s' \ \Rightarrow \ \exists \ t' \in S \ [t \overset{\tau^*a}{\to} t' \land \ s' \lesssim t']]$$

Definition Ein *Trace* eines LTS A ist ein Wort $w = a_1 \cdots a_n \in \Sigma^*$ mit

$$s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} s_{n-1} \xrightarrow{a_n} s_n,$$

wobei $s_0 \in I$ und n > 0.

Fakt $L(A) = \{ w \mid w \text{ Trace von } A \}$

Satz (Simulation ist eine konservative Abstraktion)

LTS A_2 simulation \lesssim (also $A_1 \lesssim A_2$), dann gilt $L(A_1) \subseteq L(A_2)$.

Anwendung $P \lesssim A \leq S \Rightarrow L(P) \subseteq L(S)$

(P = Programm, A Abstraktion, S Spezifikation)

Wenn man nur an der Sprache bzw. den Traces interessiert ist, kann man dennoch die Abstraktion immer so konstruieren, dass das Programm simuliert wird.

Zur Schwachen Simulation

- Man verwende τ für abstrahierte Ereignisse
 - z.B. nebensächliche Berechnungen/Datenfluss im Programm
- τ -bereinigtes LTS A für ein LTS A_1 mit τ : $\Sigma = \Sigma_1 \setminus \{\tau\}$, T(s,t) gdw. $s \xrightarrow{\tau^* a} t$ in A_1 .
 - τ-Bereinigung macht aus schwacher Simulation eine starke (und umgekehrt)
 - damit lassen sich die vorherigen Algorithmen auch hier anwenden
- Transitivität und Anwendungen wie im starken Fall
- **Divergenz** $s \xrightarrow{\tau^+} s$ wird noch unzulänglich behandelt
 - $-A_1 \lesssim A_2$ erlaubt A_1 divergent und A_2 nicht

Bisimulation

sim 13

Systemtheorie 1 - Formale Systeme 1 #342234 - WS 2006/2007 - Armin Biere - JKU Linz - Revision: 1.5

dee: Implementierung des spezifizierten Verhaltens und nicht mehr!

Definition eine Relation \approx ist eine **starke Bisimulation** gdw.

$$s \approx t$$
 dann $\forall a \in \Sigma, s' \in S [s \xrightarrow{a} s' \Rightarrow \exists t' \in S [t \xrightarrow{a} t' \land s' \approx t']]$ und $\forall a \in \Sigma, t' \in S [t \xrightarrow{a} t' \Rightarrow \exists s' \in S [s \xrightarrow{a} s' \land s' \approx t']]$

Definition eine Relation \approx ist eine **schwache Bisimulation** gdw.

$$s \approx t \quad \text{dann} \quad \forall a \in \Sigma \setminus \{\tau\}, \ s' \in S \ [s \overset{\tau^*a}{\to} s' \Rightarrow \ \exists \ t' \in S \ [t \overset{\tau^*a}{\to} t' \ \land \ s' \approx t']] \ \text{und}$$

$$\forall a \in \Sigma \setminus \{\tau\}, \ t' \in S \ [t \overset{\tau^*a}{\to} t' \Rightarrow \ \exists \ s' \in S \ [s \overset{\tau^*a}{\to} s' \ \land \ s' \approx t']]$$

Insbesondere die schwache Bisimulation bei Abstraktion von internen Ereignissen der Implementierung durch τ ist in der Praxis sehr nützlich!

Theorie-Anwendung: bisimulations-äquivalente LTS haben die gleiche Eigenschaften

Exkurs über Minimierung von EA
Systemtheorie 1 - Formale Systeme 1 #342234 - WS 2006/2007 - Armin Biere - JKU Linz - Revision: 1.5

sim 14

Geg. deterministischer und vollständiger EA $A = (S, I, \Sigma, T, F)$

- Ausgangspunkt: $\sim_0 = (F \times F) \cup (\overline{F} \times \overline{F})$
 - Partitionierung bezüglich "Endzustands-Flag"
 - Äquivalenzrelation
- verfeinere \sim_i zu \sim_{i+1}

$$s \sim_{i+1} t$$
 gdw. $s \sim_i t$ und
$$\forall a \in \Sigma, \ s' \in S \ [s \xrightarrow{a} s' \Rightarrow \ \exists \ t' \in S \ [t \xrightarrow{a} t' \land \ s' \sim_i t']] \quad \text{und}$$

$$\forall a \in \Sigma, \ t' \in S \ [t \xrightarrow{a} t' \Rightarrow \ \exists \ s' \in S \ [s \xrightarrow{a} s' \land \ s' \sim_i t']]$$

- Terminierung $\sim_{n+1} = \sim_n$ spätestens für n = |S|
- Äquivalenzrelation $\sim = \sim_n$ erzeugt minimalen Automaten A/\sim