Simple Data Structures in DP Implementation
• each variable is marked as *unassigned*, *false*, or *true* ($\{X, 0, 1\}$)

• no explicit resolution:

 – when a literal is assigned visit all clauses where its negation occurs

 – find those clauses which have all but one literal assigned to false

 – assign remaining non false literal to *true* and continue

• decision:

 – heuristically find a variable that is still unassigned

 – heuristically determine phase for assignment of this variable
• *decision level* is the depth of recursive calls (= #nested decisions)

• the *trail* is a stack to remember order in which variables are assigned

• for each decision level the old trail height is saved on the *control stack*

• undoing assignments in backtracking:

 – get old trail height from control stack

 – unassign all variables up to the old trail height
Decide

<table>
<thead>
<tr>
<th>Variables</th>
<th>Assignment</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>-1 2</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
<td>-2 3</td>
</tr>
<tr>
<td>X</td>
<td>3</td>
<td>-4 5</td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

decision level

Control

Trail
Assign

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Controls</th>
<th>Trail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Clauses

<table>
<thead>
<tr>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 2</td>
</tr>
<tr>
<td>-2 3</td>
</tr>
<tr>
<td>-4 5</td>
</tr>
</tbody>
</table>
Example cont.

BCP

Decision level: 1

Control:

Trail:

Assignment:

Variables:

Clauses:

- 1 1
- 1 2
- 1 3
- X 4
- X 5

-1 2
-2 3
-4 5
Example cont.

Decide

Decision level

Control

Trail

Assignment

Clauses

Variables
Example cont.

Assign

decision level

Control

Trail

Variables

Assignment

Clauses

Example cont.

```
<table>
<thead>
<tr>
<th>Assignment</th>
<th>Clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>-1 2</td>
</tr>
<tr>
<td>1 2</td>
<td>-2 3</td>
</tr>
<tr>
<td>1 3</td>
<td>-4 5</td>
</tr>
<tr>
<td>1 4</td>
<td></td>
</tr>
<tr>
<td>1 5</td>
<td></td>
</tr>
</tbody>
</table>
```

```
BCP

<table>
<thead>
<tr>
<th>decision level</th>
<th>Control</th>
<th>Trail</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
```

• static heuristics:
 – one linear order determined before solver is started
 – usually quite fast, since only calculated once
 – can also use more expensive algorithms

• dynamic heuristics
 – typically calculated from number of occurrences of literals
 (in unsatisfied clauses)
 – rather expensive, since it requires traversal of all clauses
 (or more expensive updates in BCP)
 – recently, second order dynamic heuristics (Chaff)
• view CNF as a graph:
 clauses as nodes, edges between clauses with same variable

• a *cut* is a set of variables that splits the graph in two parts

• recursively find short cuts that cut of parts of the graph

• static or dynamically order variables according to the cuts

\[\begin{array}{cccc}
\cdots & -1 & 2 & 3 \\
-2 & 1 & -3 & 1 \\
3 & -4 & \cdots \\
\end{array}\]

assume no occurrences of 1, 2, -1, -2 on the right side
```c
int
sat (CNF cnf)
{
    SetOfVariables cut = generate_good_cut (cnf);
    CNF assignment, left, right;

    left = cut_off_left_part (cut, cnf);
    right = cut_off_right_part (cut, cnf);

    forall_assignments (assignment, cut)
    {
        if (sat (apply (assignment, left)) && sat (apply (assignment, right)))
            return 1;
    }

    return 0;
}
```
• resembles cuts in circuits when CNF is generated with Tseitin transformation

• ideally cuts have constant or logarithmic size . . .
 – for instance in tree like circuits
 – so the problem is reconvergence:
 the same signal / variable is used multiple times

• . . . then satisfiability actually becomes polynomial (see exercise)
A clause is called *positive* if it contains a positive literal.

A clause is called *negative* if all its literals are negative.

A clause is a *Horn* clause if contains at most one positive literal.

CNF is in *Horn Form* iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: $\sigma \leq \sigma'$ iff $\sigma(x) \leq \sigma'(x)$ for all $x \in V$

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its negative clauses as well.
• CNF in Horn Form: use above specialized fast algorithm

• non Horn: split on literals which occurs positive in non Horn clauses
 – actually choose variable which occurs most often in such clauses

• this gradually transforms non Horn CNF into Horn Form

• main heuristic in SAT solver SATO

• **Note:** In general, BCP in DP prunes search space by avoiding assignments incompatible to minimal satisfying assignment for the Horn part of the CNF.
Other popular Decision Heuristics

- Dynamic Largest Individual Sum (DLIS)
 - fastest dynamic first order heuristic (eg GRASP solver)
 - choose literal (variable + phase) which occurs most often
 - ignore satisfied clauses
 - requires explicit traversal of CNF (or more expensive BCP)

- look-forward heuristics (eg SATZ solver)
 - do trial assignments and BCP for all unassigned variables (both phases)
 - if BCP leads to conflict, force toggled assignment of current trial decision
 - skip trial assignments implied by previous trial assignments
 (removes a factor of $|V|$ from the runtime of one decision search)