Bounded Model Checking

- uses SAT for model checking
 - historically not the first symbolic model checking approach
 - scales better than original BDD based techniques
- mostly incomplete in practice
 - validity of a formula can often not be proven
 - focus on counter example generation
 - only counter example up to certain length (the bound k) are searched

Bounded Model Checking Safety

checking safety property G_p for a bound k as SAT problem:

$$I(s_0) \land T(s_0, s_1) \land \cdots \land T(s_{k-1}, s_k) \land \bigvee_{i=0}^{k} \neg p(s_i)$$

check occurrence of $\neg p$ in the first k states

Bounded Model Checking Liveness

generic counter example trace of length k for liveness F_p

$$I(s_0) \land T(s_0, s_1) \land \cdots \land T(s_{k-1}, s_k) \land \bigvee_{i=0}^{k} \neg p(s_i)$$

(however we recently showed that liveness can always be reformulated as safety [BiereArthoSchuppan02])

Time Frame Expansion in HW
Time Frame Expansion in HW

inputs

outputs

states

break sequential loop

- added 1st copy
- added 2nd copy
- added 3rd copy
Time Frame Expansion in HW

- Inputs: initial states are copied to subsequent states.
- Outputs: observed signals.

Bounded Model Checking Safety in HW

- Inputs: \(!\text{prop0} \), \(!\text{prop1} \), \(!\text{prop2} \), \(!\text{prop3} \), \(!\text{prop4} \)
- Failed: \(\text{CMP} \)
- Find inputs for which failed becomes true.

Bounded Model Checking Liveness in HW

- Inputs: \(!\text{prop0} \), \(!\text{prop1} \), \(!\text{prop2} \), \(!\text{prop3} \), \(!\text{prop4} \)
- Failed: \(\text{CMP} \)
- Find inputs for which failed becomes true.
Completeness in Bounded Model Checking

- find bounds on the maximal length of counter examples
 - also called **completeness threshold**
 - exact bounds are hard to find ⇒ approximations

- induction
 - use inductive invariants as we have seen before
 - generalization of inductive invariants: **pseudo induction**

- use SAT for quantifier elimination as with BDDs (later)
 - then model checking becomes fixpoint calculation

Measuring Distances

Distance: length of shortest path between two states
\[
\delta(s,t) \equiv \min \{ n \mid \exists s_0, \ldots, s_n [s = s_0, t = s_n \text{ and } T(s_i, s_{i+1}) \text{ for } 0 \leq i < n] \}
\]
(distance can be infinite if \(s\) and \(t\) are not connected)

Diameter: maximal distance between two connected states
\[
d(T) \equiv \max \{ \delta(s,t) \mid T^\ast(s,t) \}
\]
with \(T^\ast\) defined as the transitive reflexive hull of \(T\).

Radius: maximal distance of a reachable state from the initial states
\[
r(T,I) \equiv \max \{ \delta(s,t) \mid T^\ast(s,t) \text{ and } I(s) \text{ and } \delta(s,t) \leq \delta(s',t) \text{ for all } s' \text{ with } I(s') \}
\]
(minimal number of steps to reach an arbitrary state in BFS)

Completeness Threshold for Safety

- a bad state is reached in at most \(r(T,I)\) steps from the initial states
 - a bad state is a state violating the invariant to be proven

- thus, the radius is a completeness threshold for safety properties

- for safety properties the max. \(k\) for doing bounded model checking is \(r(T,I)\)

- if no counter example of this length can be found the safety property holds

Diameter Example

- initial states unreachable states
- states with distance 1 from initial states
- single state with distance 2 from initial states

- diameter 4, radius 2

(reachable diameter 3, distance from 0 to 4 or max. distance between 2,3,4)
How to determine the radius?

reformulation:

the radius is the max. length \(r \) of a path leading from an initial state to a state \(t \), such there is no other path from an initial state to \(t \) with length less than \(r \).

Thus radius \(r \) is the minimal number which makes the following formula valid:

\[
\forall s_0, \ldots, s_{r+1}[(I(s_0) \land \bigwedge_{i=0}^{r} T(s_i, s_{i+1})) \rightarrow \\
\exists n \leq r [\exists t_0, \ldots, t_n[I(t_0) \land \bigwedge_{i=0}^{n-1} T(t_i, t_{i+1}) \land t_n = s_{r+1}]]
\]

after replacing \(\exists n \leq r \cdots \) by \(\forall_{n=0}^{r} \cdots \) we get a Quantified Boolean Formula (QBF), which is much harder to prove un/satisfiable (PSPACE complete).

Visualization of Reformulation

Determination of Reoccurrence Diameter

reformulation:

the reoccurrence radius is the length of the longest path from initial states without reoccurring states (one may further assume that only the first state is an initial state)

The reoccurring radius is the minimal \(r \) which makes the following formula valid:

\[
\forall s_0, \ldots, s_{r+1}[(I(s_0) \land \bigwedge_{i=0}^{r} T(s_i, s_{i+1})) \rightarrow \\
\bigvee_{0 \leq i < j \leq r+1} s_i = s_j]
\]

this is a propositional formula and can be checked by SAT

(exercise: reoccurrence radius/diameter is an upper bound on real radius/diameter)

Reoccurrence Radius/Diameter

- we can not find the real radius / diameter with SAT efficiently

- over approximation idea:
 - drop requirement that there is no shorter path
 - enforce different (no reoccurring) states on single path instead

reoccurrence diameter:

length of the longest path without reoccurring states

reoccurrence radius:

length of the longest initialized path without reoccurring states
Bounded Semantics with Loop

(E)LTL formula in NNF

let the path \(\pi \) be a \((k, l)\) lasso

\[
\begin{align*}
\pi \models^i_k p \quad \text{iff} & \quad p \in L(\pi(i)) \\
\pi \models^i_k \neg p \quad \text{iff} & \quad p \not\in L(\pi(i)) \\
\pi \models^i_k f \land g \quad \text{iff} & \quad \pi \models^i_k f \text{ and } \pi \models^i_k g \\
\pi \models^i_k X f \quad \text{iff} & \quad \begin{cases}
\text{false} & \text{if } i = k \\
\pi \models^{i+1}_k f & \text{else}
\end{cases} \\
\pi \models^i_k G f \quad \text{iff} & \quad \bigwedge_{j=\min(i,l)}^k \pi \models^j_k f \\
\pi \models^i_k F f \quad \text{iff} & \quad \bigvee_{j=\min(i,l)}^k \pi \models^j_k f
\end{align*}
\]

Bounded Semantics

- **definition:**
 \[
 \pi \models^i_k f :\iff \pi \models^0_k f
 \]

- bounded semantics aproximates real semantics:
 \[
 \pi_k \models f \Rightarrow \pi \models f \text{ for all } k
 \]

- *(theoretical)* completeness:

 \[
 \text{if } \pi \models f \text{ then there exists } k \text{ with } \pi_k \models f
 \]

- **note:** negate original property first (e.g. \(\text{AG} p \Rightarrow \text{EF} \neg p\))
 - \(\text{ALTL} \rightarrow \text{ELTL}\)
 - counter example \(\rightarrow\) witness
 - *bounded* witness is also a non-bounded witness

Bad Example for Reoccurrence Radius

radius 1, reoccurrence radius \(n\)

Bounded Semantics without Loop

ELTL formula in NNF

there is no \(l\) for which path \(\pi\) is a \((k, l)\) lasso

\[
\begin{align*}
\pi \models^i_k p & \quad \text{iff} \quad p \in L(\pi(i)) \\
\pi \models^i_k \neg p & \quad \text{iff} \quad p \not\in L(\pi(i)) \\
\pi \models^i_k f \land g & \quad \text{iff} \quad \pi \models^i_k f \text{ and } \pi \models^i_k g \\
\pi \models^i_k X f & \quad \text{iff} \quad \begin{cases}
\text{false} & \text{if } i = k \\
\pi \models^{i+1}_k f & \text{else}
\end{cases} \\
\pi \models^i_k G f & \quad \text{iff} \quad \text{false} \\
\pi \models^i_k F f & \quad \text{iff} \quad \bigvee_{j=\min(i,l)}^k \pi \models^j_k f
\end{align*}
\]
Translation of Bounded Semantics to SAT

- two recursive translations from (E)TL in NNF for fixed k:
 - $[.]_k^i$ assumes (k,l)-loop
 - $[.]_k^l$ assumes that no (k,l)-loop exists for all l

- add time frame expansion of transition relation:
 $$I(s_0) \land T(s_0,s_1) \land \cdots \land T(s_{k-1},s_k)$$

- add loop$_k(l)$ constraint for looping translation: $\text{loop}_k(l) := T(s_k,s_l)$

- add noloop$_k$ constraint for non-looping translation:
 $$\text{noloop}_k := \neg \bigvee_{l=0}^{k} \text{loop}_k(l)$$

Non-Looping Translation

- $[.]_k^i := p(s_i)$
- $[.]_k^i := \neg p(s_i)$
- $[f \land g]_k^i := [f]_k^i \land [g]_k^i$
- $[X f]_k^i := \begin{cases} [f]_k^{i+1} & \text{if } i < k \\ \text{false} & \text{else} \end{cases}$
- $[G f]_k^i := \text{false}$
- $[F f]_k^i := \bigvee_{j=i}^{k} [f]_k^j$

Looping Translation

- $i[.]_k^i := p(s_i)$
- $i[.]_k^i := \neg p(s_i)$
- $i[f \land g]_k^i := i[f]_k^i \land i[g]_k^i$
- $i[X f]_k^i := i[f]_{k}^{\text{next}(i)}$
- $i[G f]_k^i := \bigwedge_{j=\min(l,i)}^{k} i[f]_k^j$
- $i[F f]_k^i := \bigvee_{j=i}^{k} i[f]_k^j$

with

$$\text{next}(i) := \begin{cases} i + 1 & \text{if } i < k \\ l & \text{else} \end{cases}$$

Theorem: $K \models Ef \iff \exists k [F f]_k^s$ satisfiable

- $[.]_k^i$ and $[.]_k^l$ are linear in k if subformulae are shared
 - unique table for automatic sharing syntactically equivalent formulae
 - implemented as hash table (keys are pairs of formulae ids)

- more complex and quadratic translations for R and U