Introduction

Systemtheory 2
Formal Systems 2
#342201

SS 2006
Johannes Kepler Universität
Linz, Österreich

Univ. Prof. Dr. Armin Biere
Institute for Formal Models and Verification

http://fmv.jku.at/fs2

Motivation

- more and more complex systems
 Moore’s Law ⇒ soon we will have 10^{30} transistors / processor
 multi-million LOC / OS
 ⇒ exploding testing costs (in general not linear in system size)

- increased dependability
 everything important depends on computers:
 stir by wire, banking, stock market, workflow, . . .
 ⇒ quality concerns

- increased functionality
 security, mobility, new business processes, . . .

Test and Verification

Test

standard definition: dynamic execution / simulation of a system
integration in development process necessary

extreme position: testing should actually “drive” the development process

Verification

standard definition: static checking, symbolic execution

hardware design: verification is the process of testing

⇒ our view: Test = Verification

Implications

- not unusual to have more than 50% of resources allocated to testing

- testing and verification are (becoming) the bottleneck of development

- quality dilemma (drop quality for more features)

- more efficient methods for test and verification needed
 ⇒ formal verification is the most promising approach

- experts in new testing and verification methods are lacking

- long term: more formal development process not just formal verification
Formal Methods

- formal = mathematical

- mathematical models ⇒ precise semantics

- emphasizes static / symbolic reasoning about programs
 (so standard definition of verification falls into this category)

- rather narrow view in digital design: equivalence and model checking

- not esoteric: compilation in a broad sense is a formal method
 (high-level description is translated into low-level description)

- our view: use tools for reasoning (i.e. programs are formal entities)

Formal Methods Classification

Synchronous
Theorem Proving
Model Checking
Z
SAT
Specification
Formal
SDL
Languages
Compiler
Formal
Synthesis
Equivalence
Checking
B−Method
ASM
Formal
Verification

Formal Specification

- abstracts from unnecessary implementation details

- high-level mathematical model of the system

- very useful for high-level design

- catches ambiguous or inconsistent specifications

- formal specification per se: no tools for refinement / checking

- good example: ASM

Formal Synthesis

Initial Formal Spec

2nd Refinement

3rd Refinement

1st Refinement

4th Refinement (last formal step)

C Program

Compiler

Formal Synthesis

• integrates verification in the development process

• usually pure top-down design and incremental refinement steps

• splits large verification tasks (divide et impera) ...

• ... but forces dramatic change in development process

• it works but is costly

• each refinement step uses formal verification methods
 \[\Rightarrow \text{more powerful verification algorithms allow more automation} \]

• good example: B-Method

Layered System Design

HW

SW

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTL</td>
<td>High-Level Design</td>
</tr>
<tr>
<td>Gate</td>
<td>Low-Level Design</td>
</tr>
<tr>
<td>Transistor</td>
<td>Implementation</td>
</tr>
</tbody>
</table>

Synthesis

1. no implementation without Synthesis
2. Verification is added value (Quality)
3. both processes are incremental
4. both processes can be formal

Overview

• boolean methods:
 SAT, BDDs, ATPG, Combinational Equivalence Checking

• finite state methods:
 Bisimulation and Equivalence Checking of Automata, Model Checking

• term based methods:
 Term Rewriting, Resolution, Tableaux, Theorem Proving

• Abstraction (eg SLAM uses BDDs, Model Checking, Theorem Proving)
Focus

• how does it work?
 (algorithms and data structures)

• necessary background for use of formal verification
 (and formal methods in general)

• capacity and restrictions

• first step to become an expert in a fast expanding area

SAT Example: Equivalence Checking if-then-else Chains

optimization of if-then-else chains

<table>
<thead>
<tr>
<th>original C code</th>
<th>optimized C code</th>
</tr>
</thead>
<tbody>
<tr>
<td>if(!a && !b) h(); else if(!a) g(); else f();</td>
<td>if(a) f(); else if(b) g(); else h();</td>
</tr>
<tr>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>if(!a) { if(a) f(); if(!b) h(); else { else g(); if(!b) h(); } else f(); else g(); }</td>
<td>if(!a) { if(a) f(); else if(b) g(); else h(); }</td>
</tr>
</tbody>
</table>

How to check that these two versions are equivalent?

SAT Example cont.

1. represent procedures as independent boolean variables

\[
\text{original} := \begin{align*}
& \text{if } \neg a \land \neg b \text{ then } h \\
& \quad \text{else if } \neg a \text{ then } g \\
& \quad \text{else } f
\end{align*}
\]

\[
\text{optimized} := \begin{align*}
& \text{if } a \text{ then } f \\
& \quad \text{else if } b \text{ then } g \\
& \quad \text{else } h
\end{align*}
\]

2. compile if-then-else chains into boolean formulae

\[
\text{compile}(\text{if } x \text{ then } y \text{ else } z) \equiv (x \land y) \lor (\neg x \land z)
\]

3. check equivalence of boolean formulae

\[
\text{compile(original)} \iff \text{compile(optimized)}
\]

Compilation

\[
\begin{align*}
\text{original} & \equiv \neg a \land \neg b \text{ then } h \text{ else if } \neg a \text{ then } g \text{ else } f \\
& \equiv (\neg a \land \neg b) \land h \lor (\neg a \land \neg b) \land \text{if } \neg a \text{ then } g \text{ else } f \\
& \equiv (\neg a \land \neg b) \land h \lor (\neg a \land \neg b) \land (\neg a \land g \lor a \land f)
\end{align*}
\]

\[
\begin{align*}
\text{optimized} & \equiv a \land f \lor \neg a \land \text{if } b \text{ then } g \text{ else } h \\
& \equiv a \land f \lor \neg a \land (b \land g \lor \neg b \land h)
\end{align*}
\]

\[
\begin{align*}
(\neg a \land \neg b) \land h \lor (\neg a \land \neg b) \land (\neg a \land g \lor a \land f) & \iff a \land f \lor \neg a \land (b \land g \lor \neg b \land h)
\end{align*}
\]
How to Check (In)Equivalence?

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to \(a, b, f, g, h \), which results in different evaluations of original and optimized?

or equivalently:

Is the boolean formula \(\text{compile(original)} \not\leftrightarrow \text{compile(optimized)} \) satisfiable?

such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP (this is just a theoretical note and not really important for applications)

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula \(f \) over \(n \) propositional variables \(V = \{x, y, \ldots \} \).

Is there an assignment \(\sigma : V \rightarrow \{0, 1\} \) with \(\sigma(f) = 1 \)?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment \(\sigma \) (linear in \(n \)), calculate \(\sigma(f) \) (linear in \(|f| \))

Note: on a real (deterministic) computer this would still require \(2^n \) time

SAT is complete for NP (see complexity / theory class)

Implications for us:

general SAT algorithms are probably exponential in time (unless NP = P)

Conjunctive Normal Form

Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

\[C_1 \land C_2 \land \ldots \land C_n \]

each clause \(C \) is a disjunction of literals

\[C = L_1 \lor \ldots \lor L_m \]

and each literal is either a plain variable \(x \) or a negated variable \(\neg x \).

Example

\[(a \lor b \lor c) \land (\neg a \lor \neg b) \land (\neg b \lor \neg c) \]

Note 1: two notions for negation: in I and \(\neg \) as in \(\neg x \) for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input
Assumption: we only have conjunction, disjunction and negation as operators.

a formula is in Negation Normal Form (NNF),
if negations only occur in front of variables
⇒ all internal nodes in the formula tree are either ANDs or ORs
linear algorithms for generating NNF from an arbitrary formula
often NNF generations includes elimination of other non-monotonic operators:

\[\text{NNF of } f \leftrightarrow g \text{ is NNF of } f \land g \lor \overline{f} \land g \]

in this case the result can be exponentially larger (see parity example later).

Simple Translation of Formula into CNF

```
Formula
formula2cnf_aux (Formula f)
{
  if (is_cnf (f))
    return f;
  if (op (f) == AND)
    { l = formula2cnf_aux (left_child (f));
      r = formula2cnf_aux (right_child (f));
      return new_node (AND, l, r); }
  else
    { assert (op (f) == OR);
      l = formula2cnf_aux (left_child (f));
      r = formula2cnf_aux (right_child (f));
      return merge_cnf (l, r); }
}
```
Why are Sharing / Circuits / DAGs important?

DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion

Parity Example

Boole
parity (Boole a, Boole b, Boole c, Boole d, Boole e, Boole f, Boole g, Boole h, Boole i, Boole j)
{
 tmp0 = b ? !a : a;
 tmp1 = c ? !tmp0 : tmp0;
 tmp2 = d ? !tmp1 : tmp1;
 tmp3 = e ? !tmp2 : tmp2;
 tmp4 = f ? !tmp3 : tmp3;
 tmp5 = g ? !tmp4 : tmp4;
 tmp6 = h ? !tmp5 : tmp5;
 tmp7 = i ? !tmp6 : tmp6;
 return j ? !tmp7 : tmp7;
}

Eliminate the tmp... variables through substitution.

What is the size of the DAG vs the Tree representation?

How to detect Sharing

• through caching of results in algorithms operating on formulas
 (examples: substitution algorithm, generation of NNF for non-monotonic ops)

• when modeling a system: variables are introduced for subformulae
 (then these variables are used multiple times in the top level formula)

• structural hashing: detects structural identical subformulae
 (see Signed And Graphs later)

• equivalence extraction: eg. BDD sweeping, Stålmarcks Method
 (we will look at both techniques in more detail later)

Example of Tseitin Transformation: Circuit to CNF

CNF

o ∧ (x ↦ a ∧ c) ∧
(y ↦ b ∨ x) ∧
(u ↦ a ∨ b) ∧
(v ↦ b ∨ c) ∧
w ↦ u ∧ v) ∧
o ↦ y ⊕ w)
Algorithmic Description of Tseitin Transformation

1. for each non input circuit signal \(s \) generate a new variable \(s_x \)

2. for each gate produce complete input / output constraints as clauses

3. collect all constraints in a big conjunction

the transformation is *satisfiability equivalent*:
the result is satisfiable iff and only the original formula is satisfiable

not equivalent in the classical sense to original formula: it has new variables

extract satisfying assignment for original formula, from one of the result
(just project satisfying assignment onto the original variables)

Tseitin Transformation: Input / Output Constraints

Negation:
\[
\begin{align*}
 x \leftrightarrow \overline{y} & \iff (x \rightarrow \overline{y}) \land (\overline{y} \rightarrow x) \\
 & \iff (\overline{x} \lor \overline{y}) \land (y \lor x)
\end{align*}
\]

Disjunction:
\[
\begin{align*}
 x \leftrightarrow (y \lor z) & \iff (y \rightarrow x) \land (z \rightarrow x) \land (x \rightarrow (y \lor z)) \\
 & \iff ((\overline{y} \lor \overline{z}) \lor (y \lor z)) \land (\overline{x} \lor x)
\end{align*}
\]

Conjunction:
\[
\begin{align*}
 x \leftrightarrow (y \land z) & \iff (x \rightarrow y) \land (x \rightarrow z) \land ((y \land z) \rightarrow x) \\
 & \iff ((\overline{x} \lor y) \land (\overline{x} \lor z) \land (y \lor z) \lor x) \land (\overline{y} \lor z) \lor x)
\end{align*}
\]

Equivalence:
\[
\begin{align*}
 x \leftrightarrow (y \leftrightarrow z) & \iff (x \leftrightarrow (y \leftrightarrow z)) \land ((y \leftrightarrow z) \rightarrow x) \\
 & \iff (x \rightarrow ((y \leftrightarrow z) \land (z \rightarrow y)) \land ((y \leftrightarrow z) \rightarrow x) \\
 & \iff (x \rightarrow ((y \rightarrow z) \land (z \rightarrow y)) \land ((y \leftrightarrow z) \rightarrow x) \\
 & \iff (\overline{x} \lor y) \land (\overline{x} \lor z) \land (y \lor z) \lor x) \land (\overline{y} \lor z) \lor x)
\end{align*}
\]

Optimizations for Tseitin Transformation

- goal is smaller CNF (less variables, less clauses)
- extract multi argument operands (removes variables for intermediate nodes)
- half of AND, OR node constraints may be removed for *unnegated* nodes
 a node occurs negated if it has an ancestor which is a negation
 half of the constraints determine parent assignment from child assignment
 those are unnecessary if node is not used negated
- those have to be carefully applied to DAG structure
 (compare with the implementation of the BMC tool from CMU)

Davis & Putnam Procedure (DP)

- dates back to the 50ies:
 original version is *resolution based* (less successful)
- idea: case analysis (try \(x = 0, 1 \) in turn and recurse)
- most successful SAT solvers (autumn 2003)
 works for very large instances
- recent (\(\leq 10 \) years) optimizations:
 backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures
 (we will have a look at each of them)
Resolution

- basis for first (less successful) resolution based DP
- can be extended to first order logic
- helps to explain learning

Resolution Rule

\[C \cup \{v\} \quad D \cup \{\neg v\} \]

\[\{v, \neg v\} \cap C = \{v\} \cap D = \emptyset \]

Read: resolving the clause \(C \cup \{v\} \) with the clause \(D \cup \{\neg v\} \), both above the line, on the variable \(v \), results in the clause \(D \cup C \) below the line.

Correctness of Resolution Rule

Usage of such rules: if you can derive what is above the line (premise) then you are allowed to deduce what is below the line (conclusion).

Theorem. (premise satisfiable \(\Rightarrow \) conclusion satisfiable)

\[\sigma(C \cup \{v\}) = \sigma(D \cup \{\neg v\}) = 1 \Rightarrow \sigma(C \cup D) = 1 \]

Proof.

let \(c \in C, d \in D \) with \((\sigma(c) = 1 \text{ or } \sigma(v) = 1) \) and \((\sigma(d) = 1 \text{ or } \sigma(\neg v) = 1) \)

if \(\sigma(c) = 1 \) or \(\sigma(d) = 1 \) conclusion follows immediately

otherwise \(\sigma(v) = \sigma(\neg v) = 1 \Rightarrow \) contradiction

q.e.d.

Completeness of Resolution Rule

Theorem. (conclusion satisfiable \(\Rightarrow \) premise satisfiable)

\[\sigma(C \cup D) = 1 \Rightarrow \exists \sigma' \text{ with } \sigma'(C \cup \{v\}) = \sigma'(D \cup \{\neg v\}) = 1 \]

Proof.

with out loss of generality pick \(c \in C \) with \(\sigma(c) = 1 \)

define \(\sigma'(x) = \begin{cases} 0 & \text{if } x = v \\ \sigma(x) & \text{else} \end{cases} \)

since \(v \) and \(\neg v \) do not occur in \(C \), we still have \(\sigma'(C) = 1 \) and thus \(\sigma'(C \cup \{v\}) = 1 \)

by definition \(\sigma'(\neg v) = 1 \) and thus \(\sigma'(D \cup \{\neg v\}) = 1 \)

q.e.d.

Resolution Based DP

Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable
2. find variables which only occur in one phase (only positive or negative)
3. remove all clauses in which these variables occur
4. if no clause left then terminate with result satisfiable
5. choose \(x \) as one of the remaining variables with occurrences in both phases
6. add results of all possible resolutions on this variable
7. remove all trivial clauses and all clauses in which \(x \) occurs
8. continue with 1.
Example for Resolution DP

check whether XOR is weaker than OR, i.e. validity of:

\[a \lor b \rightarrow (a \oplus b) \]

which is equivalent to unsatisfiability of the negation:

\[(a \lor b) \land \neg (a \oplus b) \]

since negation of XOR is XNOR (equivalence):

\[(a \lor b) \land (a \leftrightarrow b) \]

we end up checking the following CNF for satisfiability:

\[(a \lor b) \land \neg (a \lor b) \land (a \lor \neg b) \]

Correctness of Resolution Based DP

Proof. in three steps:

(A) show that termination criteria are correct

(B) each transformation preserves satisfiability

(C) each transformation preserves unsatisfiability

Ad (A):

an empty clause is an empty disjunction, which is unsatisfiable

if literals occur only in one phase assign those to 1 \(\Rightarrow\) all clauses satisfied

Example for Resolution DP cont.

\[(a \lor b) \land \neg (a \lor b) \land (a \lor \neg b)\]

initially we can skip 1. - 4. of the algorithm and choose \(x = b\) in 5.

in 6. we resolve \((\neg a \lor b)\) with \((a \lor \neg b)\) and \((a \lor b)\) with \((a \lor \neg b)\) both on \(b\) and add the results \((a \lor \neg a)\) and \((a \lor a)\):

\[(a \lor b) \land (a \lor \neg a) \land (a \lor \neg b) \land (a \lor \neg a) \land (a \lor a)\]

the trivial clause \((a \lor \neg a)\) and clauses with occurrences of \(b\) are removed:

\[(a \lor a)\]

in 2. we find \(a\) to occur only positive and in 3. the remaining clause is removed

the test in 4. succeeds and the CNF turns out to be satisfiable

(thus the original formula is invalid – not a tautology)

Correctness of Resolution Based DP Part (B)

CNF transformations preserve satisfiability:

removing a clause does not change satisfiability

thus only adding clauses could potentially not preserve satisfiability

the only clauses added are the results of resolution

correctness of resolution rule shows:

if the original CNF is satisfiable, then the added clause are satisfiable

(even with the same satisfying assignment)
Correctness of Resolution Based DP Part (C)

CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability

thus only removing clauses could potentially not preserve unsatisfiability

trivial clauses \((v \lor \neg v \lor \ldots)\) are always valid and can be removed

let \(f\) be the CNF after removing all trivial clauses (in step 7.)

let \(g\) be the CNF after removing all clauses in which \(x\) occurs (after step 7.)

we need to show \((f\text{ unsat} \Rightarrow g\text{ unsat})\), or equivalently \((g\text{ sat} \Rightarrow f\text{ sat})\)

the latter can be proven as the completeness proof for the resolution rule
(see next slide)

Problems with Resolution Based DP

- if variables have many occurrences, then many resolutions are necessary
- in the worst case, \(x\) and \(\neg x\) occur in half of the clauses ...
- ... then the number of clauses increases quadratically
- clauses become longer and longer
- unfortunately in real world examples the CNF explodes
 (we will later see how BDDs can be used to overcome some of these problems)
- How to obtain the satisfying assignment efficiently (counter example)?

Correctness of Resolution Based DP Part (C) cont.

If we interpret \(\lor\) as disjunction and clauses as formulae, then

\[(C_1 \lor x) \land \ldots \land (C_k \lor x) \land (D_1 \lor \neg x) \land \ldots \land (D_l \lor \neg x)\]

is, via distributivity law, equivalent to

\[\left(\bigwedge_i C_i \land \ldots \land \bigwedge_k C_k\right) \lor x \land \left(\bigwedge_j D_j \land \ldots \land \bigwedge_l D_l\right) \lor \neg x\]

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those \(\sigma'\) derived for multiple resolutions are formally allowed to assign different values for the resolution variable.

Second version of DP

- resolution based version often called DP, second version DPLL
 (DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])
- it eliminates variables through case analysis: time vs space
- only unit resolution used (also called boolean constraint propagation)
- case analysis is on-the-fly:
 cases are not elaborated in a predefined fixed order, but ...
 ... only remaining crucial cases have to be considered
- allows sophisticated optimizations
a unit clause is a clause with a single literal

in CNF a unit clause forces its literal to be assigned to 1

unit resolution is an application of resolution, where one clause is a unit clause

also called boolean constraint propagation

Unit-Resolution Example

check whether XNOR is weaker than AND, i.e. validity of:

\[a \land b \rightarrow (a \leftrightarrow b) \]

which is equivalent to unsatisfiability of the CNF (exercise)

\[a \land b \land (a \lor b) \land (\neg a \lor \neg b) \]

adding clause obtained from unit resolution on \(a \) results in

\[a \land b \land (a \lor b) \land (\neg a \lor \neg b) \land (\neg b) \]

removing clauses containing \(a \) or \(\neg a \)

\[b \land (\neg b) \]

unit resolution on \(b \) results in an empty clause and we conclude unsatisfiability.

Ad: Unit Resolution

• if unit resolution produces a unit, e.g. resolving \((a \lor \neg b)\) with \(b \) produces \(a \), continue unit resolution with this new unit

• often this repeated application of unit resolution is also called unit resolution

• unit resolution + removal of subsumed clauses never increases size of CNF

Basic DPLL Algorithm

1. apply repeated unit resolution and removal of all subsumed clauses (BCP)
2. if empty clause found then return unsatisfiable
3. find variables which only occur in one phase (only positive or negative)
4. remove all clauses in which these variables occur (pure literal rule)
5. if no clause left then return satisfiable
6. choose \(x \) as one of the remaining variables with occurrences in both phases
7. recursively call DPLL on current CNF with the unit clause \(\{x\} \) added
8. recursively call DPLL on current CNF with the unit clause \(\{\neg x\} \) added
9. if one of the recursive calls returns satisfiable return satisfiable
10. otherwise return unsatisfiable
DPLL Example

\[(\neg a \lor b) \land (a \lor \neg b) \land (\neg a \lor \neg b)\]

Skip 1. - 6., and choose \(x = a\). First recursive call:

\[(\neg a \lor b) \land (a \lor \neg b) \land (\neg a \lor \neg b) \land a\]

unit resolution on \(a\) and removal of subsumed clauses gives

\(b \land \neg b\)

BCP gives empty clause, return *unsatisfiable*. Second recursive call:

\[(\neg a \lor b) \land (a \lor \neg b) \land (\neg a \lor \neg b) \land \neg a\]

BCP gives \(\neg b\), only positive recurrence of \(b\) left, return *satisfiable*

(satisfying assignment \(\{a \mapsto 0, b \mapsto 0\}\))

Expansion Theorem of Shannon

Theorem.

\[f(x) \equiv x \land f(1) \lor \neg x \land f(0)\]

Proof.

Let \(\sigma\) be an arbitrary assignment to variables in \(f\) including \(x\)

\[\sigma(f(x)) = \sigma(f(0)) = \sigma(0 \land f(1) \lor 1 \land f(0)) = \sigma(x \land f(1) \lor \neg x \land f(0))\]

\[\sigma(f(x)) = \sigma(f(1)) = \sigma(1 \land f(1) \lor 0 \land f(0)) = \sigma(x \land f(1) \lor \neg x \land f(0))\]

Correctness of Basic DPLL Algorithm

first observe: \(x \land f(x)\) is satisfiable if and only if \(x \land f(1)\) is satisfiable

similarly, \(\neg x \land f(x)\) is satisfiable if and only if \(\neg x \land f(0)\) is satisfiable

then use expansion theorem of Shannon:

\(f(x)\) satisfiable if and only if \(\neg x \land f(0)\) or \(x \land f(1)\) satisfiable if and only if \(\neg x \land f(x)\) or \(x \land f(x)\) satisfiable

rest follows along the lines of the correctness proof for resolution based DP

Simple Data Structures in DP Implementation

```
Variables: 1 2 -2 1 2 3 -3 2
Clauses:  -1 -2
          -1  2
          1 -2
          1  2
          3 -1 -2
          -3  1
          -3  2
```
• each variable is marked as unassigned, false, or true (\{X, 0, 1\})

• no explicit resolution:
 – when a literal is assigned visit all clauses where its negation occurs
 – find those clauses which have all but one literal assigned to false
 – assign remaining non false literal to true and continue

• decision:
 – heuristically find a variable that is still unassigned
 – heuristically determine phase for assignment of this variable

• decision level is the depth of recursive calls (= #nested decisions)

• the trail is a stack to remember order in which variables are assigned

• for each decision level the old trail height is saved on the control stack

• undoing assignments in backtracking:
 – get old trail height from control stack
 – unassign all variables up to the old trail height
Decision Heuristics

- **static heuristics:**
 - one *linear order* determined before solver is started
 - usually quite fast, since only calculated once
 - can also use more expensive algorithms

- **dynamic heuristics**
 - typically calculated from number of occurrences of literals (in unsatisfied clauses)
 - rather expensive, since it requires traversal of all clauses (or more expensive updates in BCP)
 - recently, *second order* dynamic heuristics (Chaff)

Cut Width Algorithm

```c
int sat (CNF cnf)
{
    SetOfVariables cut = generate_good_cut (cnf);
    CNF assignment, left, right;

    left = cut_off_left_part (cut, cnf);
    right = cut_off_right_part (cut, cnf);

    forall_assignments (assignment, cut)
    {
        if (sat (apply (assignment, left)) && sat (apply (assignment, right)))
            return 1;
    }

    return 0;
}
```
Cut Width Heuristics cont.

- resembles cuts in circuits when CNF is generated with Tseitin transformation
- ideally cuts have constant or logarithmic size...
 - for instance in tree like circuits
 - so the problem is reconvergence: the same signal/variable is used multiple times
- ... then satisfiability actually becomes polynomial (see exercise)

CNF in Horn Form

A clause is called positive if it contains a positive literal.

A clause is called negative if all its literals are negative.

A clause is a Horn clause if contains at most one positive literal.

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: \(\sigma \leq \sigma' \iff \sigma(x) \leq \sigma'(x) \) for all \(x \in V \)

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its negative clauses as well.

DP and Horn Form

- CNF in Horn Form: use above specialized fast algorithm
- non Horn: split on literals which occurs positive in non Horn clauses
 - actually choose variable which occurs most often in such clauses
- this gradually transforms non Horn CNF into Horn Form
- main heuristic in SAT solver SATO

Other popular Decision Heuristics

- Dynamic Largest Individual Sum (DLIS)
 - fastest dynamic first order heuristic (eg GRASP solver)
 - choose literal (variable + phase) which occurs most often
 - ignore satisfied clauses
 - requires explicit traversal of CNF (or more expensive BCP)

- look-forward heuristics (eg SATZ solver)
 - do trial assignments and BCP for all unassigned variables (both phases)
 - if BCP leads to conflict, force toggled assignment of current trial decision
 - skip trial assignments implied by previous trial assignments (removes a factor of \(|V|\) from the runtime of one decision search)
If \(y \) has never been used to derive a conflict, then skip \(y \) case.

Immediately jump back to the \(\bar{x} \) case – assuming \(x \) was used.

Split on \(-3\) first (bad decision).

Split on \(-1\) and get first conflict.

Regularly backtrack and assign \(1 \) to get second conflict.
Backjumping Example

-1 1 -1 1

Backtrack to root, assign 3 and derive same conflicts.

Assignment −3 does not contribute to conflict.

-3

1

So just backjump to root before assigning 1.

-3

1

1

-3

Backjumping

- backjumping helps to recover from bad decisions
 - bad decisions are those that do not contribute to conflicts
 - without backjumping same conflicts are generated in second branch
 - with backjumping the second branch of bad decisions is just skipped
- particularly useful for unsatisfiable instances
 - in satisfiable instances good decisions will guide us to the solution
- with backjumping many bad decisions increase search space roughly quadratically instead of exponentially with the number of bad decisions
Implication Graph

- The implication graph maps inputs to the result of resolutions.
- Backward from the empty clause, all contributing clauses can be found.
- The variables in the contributing clauses are contributing to the conflict.
- Important optimization, since we only use unit resolution:
 - Generate graph only for resolutions that result in unit clauses.
 - The assignment of a variable is the result of a decision or a unit resolution.
 - Therefore, the graph can be represented by saving the reasons for assignments with each assigned variable.

General Implication Graph as Hyper-Graph

- General implication graph as hyper-graph.

Optimized Implication Graph for Unit Resolution in DP

- Graph becomes an ordinary (non hyper) directed graph.
- Simplifies implementation:
 - Store a pointer to the reason clause with each assigned variable.
 - Decision variables just have a null pointer as reason.
 - Decisions are the roots of the graph.

Learning

- Can we learn more from a conflict?
 - Backjumping does not fully avoid the occurrence of the same conflict.
 - The same (partial) assignments may generate the same conflict.
- Generate conflict clauses and add them to CNF:
 - The literals contributing to a conflict form a partial assignment.
 - This partial assignment is just a conjunction of literals.
 - Its negation is a clause (implied by the original CNF).
 - Adding this clause avoids this partial assignment to happen again.
Conflict Driven Backtracking/Backjumping

- observation: current decision always contributes to conflict
 - otherwise BCP would have generated conflict one decision level lower
 - conflict clause has (exactly one) literal assigned on current decision level
- instead of backtracking
 - generate and add conflict clause
 - undo assignments as long conflict clause is empty or unit clause
 (in case conflict clause is the empty clause conclude unsatisfiability)
 - resulting assignment from unit clause is called conflict driven assignment

CNF for following Examples

-3 1 2 0
3 -1 0
3 -2 0
-4 -1 0
-4 -2 0
-3 4 0
3 -4 0
-3 5 6 0
3 -5 0
3 -6 0
4 5 6 0

We use a version of the DIMACS format.
Variables are represented as positive integers.
Integers represent literals.
Subtraction means negation.
A clause is a zero terminated list of integers.

CNF has a good cut made of variables 3 and 4 (cf Exercise 4 + 5).
(but we are going to apply DP with learning to it)

DP with Learning Run 1 (3 as 1st decision)

- decision
 - l = 0 (no unit clause originally, so no implications)
 - empty clause (conflict)
 - l = 1
 - 3
 - 4
 - empty clause (conflict)

unit clause -3 is generated as learned clause and we backtrack to l = 0

- decision
 - l = 0
 - unit
 - -3
 - 4
 - empty clause (conflict)
 - l = 1
 - 3
 - 4
 - empty clause (conflict)

since -3 has a real unit clause as reason, an empty conflict clause is learned

DP with Learning Run 2 Fig. 1 (-1, 3 as decision order)

- decision
 - l = 0 (no unit clause originally, so no implications)
 - l = 1 (no implications on this decision level either)
 - decision
 - l = 2 (using the FIRST clause)
 - 3
 - 4
 - empty clause (conflict)

since FIRST clause was used to derive 2, conflict clause is (1 -3)
backtrack to l = 1 (smallest level for which conflict clause is a unit clause)
DP with Learning Run 2 Fig. 2 (-1, 3 as decision order)

- $l = 0$ (no unit clause originally, so no implications)
- $l = 1$
 - decision
 - $l = 1$
 - $l = 1$
 - decision
 - $l = 2$
 - decision
 - $l = 2$

1st conflict clause

- empty clause (conflict)

learned conflict clause is the unit clause 1

backtrack to decision level $l = 0$

DP with Learning Run 3 Fig. 1 (-6, 3 as decision order)

- $l = 0$ (no unit clause originally, so no implications)
- $l = 1$
 - decision
 - $l = 1$
 - decision
 - $l = 2$
 - decision
 - $l = 3$

finally the empty clause is derived which proves unsatisfiability

learn the unit clause -3 and BACKJUMP to decision level $l = 0$
Toplevel Loop in DP with Learning

```c
int sat (Solver solver)
{
  Clause conflict;

  for (;;)
  {
    if (bcp_queue_is_empty (solver) && !decide (solver))
      return SATISFIABLE;

    conflict = deduce (solver);

    if (conflict && !backtrack (solver, conflict))
      return UNSATISFIABLE;
  }
}
```

Backtracking in DP with Learning

```c
int backtrack (Solver solver, Clause conflict)
{
  Clause learned_clause; Assignment assignment; int new_level;

  if (decision_level(solver) == 0)
    return 0;

  analyze (solver, conflict);
  learned_clause = add (solver);

  assignment = drive (solver, learned_clause);
  enqueue_bcp_queue (solver, assignment);

  new_level = jump (solver, learned_clause);
  undo (solver, new_level);

  return 1;
}
```

Learning as Resolution

- conflict clause: obtained by backward resolving empty clause with reasons
 - start at clause which has all its literals assigned to false
 - resolve one of the false literals with its reason
 - invariant: result still has all its literals assigned to false
 - continue until user defined size is reached

- gives a nice correspondence between resolution and learning in DP
 - allows to generate a resolution proof from a DP run
 - implemented in RELSAT solver

Conflict Clauses as Cuts in the Implication Graph

- a simple cut always exists: set of roots (decisions) contributing to the conflict
Unique Implication Points (UIP)

Detection of UIPs

- can be found by graph traversal in the order of made assignments
- trail respects this order
- traverse reasons of variables on trail starting with conflict
- count "open paths" (initially size of clause with only false literals)
- if all paths converged at one node, then UIP is found
- decision of current decision level is a UIP and thus a sentinel

Further Options in Using UIPs

- assume a non decision UIP is found
- this UIP is part of a potential cut
- graph traversal may stop (everything behind the UIP is ignored)
- negation of the UIP literal constitutes the conflict driven assignment
- may start new clause generation (UIP replaces conflict)
 - each conflict may generate multiple learned clauses
 - however, using only the first UIP encountered seems to work best

More Heuristics for Conflict Clauses Generation

- intuitively is is important to localize the search (cf cutwidth heuristics)
- cuts for learned clauses may only include UIPs of current decision level
- on lower decision levels an arbitrary cut can be chosen
- multiple alternatives
 - include all the roots contributing to the conflict
 - find minimal cut (heuristically)
 - **cut off at first literal of lower decision level** (works best)
Second Order Dynamic Decision Heuristics: VSIDS

- “second order” because it involves statistics about the search

- Variable State Independent Decaying Sum (VSIDS) decision heuristic (implemented in CHAFF and LIMMAT solver)

- VSIDS just counts the occurrences of literals in conflict clauses

- literal with maximal count (score) is chosen

- score is multiplied by a factor $f < 1$ after a certain number of conflicts occurred (this is the “decaying” part and also called rescoring)

- emphasizes (negation of) literals contributing recently to conflicts (localization)

BERKMIN’s Dynamic Second Order Heuristics

- observation:
 - recently added conflict clauses contain all the good variables of VSIDS
 - the order of those clauses is not used in VSIDS

- basic idea:
 - simply try to satisfy recently learned clauses first
 - use VSIDS to chose the decision variable for one clause
 - if all learned clauses are satisfied use other heuristics
 - intuitively obtains another order of localization (no proofs yet)

- results are mixed, but in general slightly more robust than just VSIDS

Other Types of Learning

- similar to look-ahead heuristics: polynomially bounded search
 - may be recursively applied (however, is often too expensive)

- Stålmarck’s Method
 - works on triplets (intermediate form of the Tseitin transformation): $x = (a \land b), y = (c \lor d), z = (e \oplus f)$ etc.
 - generalization of BCP to (in)equalities between variables
 - test rule splits on the two values of a variable

- Recursive Learning (Kunz & Pradhan)
 - works on circuit structure (derives implications)
 - splits on different ways to justify a certain variable value

Restarts

- for satisfiable instances the solver may get stuck in the unsatisfiable part
 - even if the search space contains a large satisfiable part

- often it is a good strategy to abandon the current search and restart
 - restart after the number of decisions reached a restart limit

- avoid to run into the same dead end
 - by randomization (either on the decision variable or its phase)
 - and/or just keep all the learned clauses

- for completeness dynamically increase restart limit
1. **BCP over (in)equalities:**

 \[
 x = y \\
 z = (x \oplus y) \\
 z = 0 \\
 x = 0 \\
 z = (x \lor y) \\
 z = 0 \\
 x = 0 \\
 z = (x \lor y) \\
 z = 0 \\
 \]

2. **Structural rules:**

 \[
 x = (a \lor b) \\
 y = (a \lor b) \\
 x = y \\
 \]

3. **Test rule:**

 \[
 \{ x = 0 \} \cup E \\
 \downarrow \\
 E_0 \cup E \\
 \]

 \[
 \{ x = 1 \} \cup E \\
 \downarrow \\
 E_1 \cup E \\
 \]

 \[
 (E_0 \cap E_1) \cup E \\
 \]

Assume \(x = 0 \), BCP and derive (in)equality \(E_0 \), then assume \(x = 1 \), BCP and derive (in)equality \(E_1 \). The intersection of \(E_0 \) and \(E_1 \) contains the (in)equalities valid in **any** case.

Model Checking

- **Check algorithmically** temporal / sequential properties
 - systems are originally **finite state**
 - simple model: finite state automaton

- **Comparison** of automata can be seen as model checking
 - check that the output streams of two finite state systems “match”
 - process algebra: simulation and bisimulation checking

- **Temporal logics** as specification mechanism
 - safety, liveness and more general temporal operators, fairness
• fixpoint algorithms with symbolic representations:
 – timed automata (clocks)
 – hybrid automata (differential equations)
 – termination guaranteed if finite quotient structure exists

• simply run model checker for some time, e.g. Java Pathfinder

• run time verification
 1. example: add checker synthesized from temporal spec
 2. example: run all schedules for one test case

• check programs (incl. loops and recursion) over finite domains, e.g. SLAM
Traffic Light Controller (TLC)

Safety

the two traffic lights should never show a green light at the same time

State Space

- state space is the set of assignments to variables of the system
 - state space is finite if the range of variables is finite
 - this notion works for infinite state spaces as well

- TLC example:
 - single assignment $\sigma: \{\text{southnorth, eastwest}\} \rightarrow \{\text{green, yellow, red}\}$
 - set of assignments is isomorphic to $\{\text{green, yellow, red}\}^2$
 - eg state space is isomorphic to the crossproduct of variable ranges

- not all states are reachable: (green, green)
Safety

- Safety properties specify **invariants** of the system.

- Simple generic algorithm for checking safety properties:
 1. Iteratively generate all reachable states.
 2. Check for violation of invariant for newly reached states.
 3. Terminate if all newly reached states can be found.

- Compare with **assertions**
 - Used in run time checking: `assert` in C and VHDL.
 - Contract checking: `require`, `ensure`, etc. in Eiffel.

Unsafe TLC in SMV

- Symbolic model checker implemented by Ken McMillan at CMU (early 90’ies).
- Input language: finite models + temporal specification.
- Hierarchical description, similar to hardware description language (HDL).
- Integer and enumeration types, arithmetic operations.
- Heavily relies on the data structure Binary Decision Diagrams (BDDs).

Reachable States of One Traffic Light

- MODULE `trafficlight (enable)`
- VAR `light : { green, yellow, red };`
 `back : boolean;`
- ASSIGN
 - `init (light) := red;`
 `next (light) :=
 case
 light = red & !enable : red;
 light = red & enable : yellow;
 light = yellow & back : red;
 light = yellow & !back : green;
 1 : yellow;
 esac;
 next (back) :=
 case
 light = red & enable : 0;
 light = green : 1;
 1 : back;
 esac;
- MODULE `main`
- VAR `southnorth : trafficlight (1);`
 `eastwest : trafficlight (1);`
- SPEC
 - `AG !(southnorth.light = green & eastwest.light = green)`

12 reachable states out of 12 states
Reachable States of Unsafe TLC

MO DU LE main
VAR
turn : { ew, sn } ;
southnorth : trafficlight (enablesouthnorth);
eastwest : trafficlight (enableeastwest);
DEFINE
enableeastwest := southnorth.light = red & turn = ew;
enablesouthnorth := eastwest.light = red & turn = sn;
SPEC
AG !(southnorth.light = green & eastwest.light = green)

idea: disable traffic light as long the other is not red and its not the others turn

Liveness

traffic lights showing red should eventually show green
Liveness

traffic lights showing red should eventually show green

Result of Boolean Encoding

- initial state predicate I represented as boolean formula

 $!eastwest\.light@0 \& eastwest\.light@1$

 (equivalent to $\text{init(eastwest\.light)} := \text{red}$)

- transition relation T represented as boolean formula

- encoding of atomic predicates p as boolean formulae

 $!eastwest\.light@1 \& !eastwest\.light@0$

 (equivalent to $\text{eastwest\.light} \neq \text{green}$)

Boolean Encoding

- compilation of finite model into pure propositional domain

- first step is to flatten the hierarchy
 - recursive instantiation of all submodules
 - name and parameter substitution
 - may increase program size exponentially

- second step is to encode variables with boolean variables

 $\begin{array}{c|cc}
 \text{light} & \text{light@1} & \text{light@0} \\
 \hline
 \text{green} & 0 & 0 \\
 \text{yellow} & 0 & 1 \\
 \text{red} & 1 & 0 \\
 \end{array}$

Bounded Model Checking

- uses SAT for model checking
 - historically not the first symbolic model checking approach
 - scales better than original BDD based techniques

- mostly incomplete in practice
 - validity of a formula can often not be proven
 - focus on counter example generation
 - only counter example up to certain length (the bound k) are searched
checking safety property Gp for a bound k as SAT problem:

$$I(s_0) \land T(s_0,s_1) \land \cdots \land T(s_{k-1},s_k) \land \bigwedge_{i=0}^{k} \neg p(s_i)$$

check occurrence of $\neg p$ in the first k states

generic counter example trace of length k for liveness Fp

$$I(s_0) \land T(s_0,s_1) \land \cdots \land T(s_k,s_{k+1}) \land \bigwedge_{i=0}^{k} s_i = s_{k+1} \land \bigwedge_{i=0}^{k} \neg p(s_i)$$

(however we recently showed that liveness can always be reformulated as safety [BiereArthoSchuppan02])

Time Frame Expansion in HW

inputs

sequential feedback loop

states

outputs

combinational logic

sequential circuit

break sequential loop
Time Frame Expansion in HW

Revision: 1.11

133

inputs
outputs
states

added 1st copy

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

Revision: 1.11

134

inputs
outputs
states

added 2nd copy

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

Revision: 1.11

135

inputs
outputs
states

added 3rd copy

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

Revision: 1.11

136

inputs
outputs
states

added 4th copy

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

inputs
outputs
states

Time Frame Expansion in HW

Bounded Model Checking Safety in HW

Bounded Model Checking Liveness in HW

Completeness in Bounded Model Checking

- find bounds on the maximal length of counter examples
 - also called completeness threshold
 - exact bounds are hard to find ⇒ approximations

- induction
 - use inductive invariants as we have seen before
 - generalization of inductive invariants: pseudo induction

- use SAT for quantifier elimination as with BDDs (later)
 - then model checking becomes fixpoint calculation

Measuring Distances

Distance: length of shortest path between two states

\[\delta(s,t) \equiv \min \{n \mid \exists s_0, \ldots, s_n [s = s_0, t = s_n \text{ and } T(s_i, s_{i+1}) \text{ for } 0 \leq i < n] \} \]

(distance can be infinite if \(s \) and \(t \) are not connected)

Diameter: maximal distance between two connected states

\[d(T) \equiv \max \{\delta(s,t) \mid T^*(s,t)\} \]

with \(T^* \) defined as the transitive reflexive hull of \(T \).

Radius: maximal distance of a reachable state from the initial states

\[r(T,I) \equiv \max \{\delta(s,t) \mid T^*(s,t) \text{ and } I(s) \text{ and } \delta(s,t) \leq \delta(s',t) \text{ for all } s' \text{ with } I(s')\} \]

(minimal number of steps to reach an arbitrary state in BFS)

Completeness Threshold for Safety

- a bad state is reached in at most \(r(T,I) \) steps from the initial states
 - a bad state is a state violating the invariant to be proven
- thus, the radius is a completeness threshold for safety properties
- for safety properties the max. \(k \) for doing bounded model checking is \(r(T,I) \)
- if no counter example of this length can be found the safety property holds

Diameter Example

How to determine the radius?

reformulation:

the radius is the max. length \(r \) of a path leading from an initial state to a state \(t \), such there is no other path from an initial state to \(t \) with length less than \(r \).

Thus radius \(r \) is the minimal number which makes the following formula valid:

\[
\forall s_0, \ldots, s_{r+1}[I(s_0) \land \bigwedge_{i=0}^{r} T(s_i, s_{i+1})] \rightarrow \\
\exists n \leq r [\exists t_0, \ldots, t_n[I(t_0) \land \bigwedge_{i=0}^{n-1} T(t_i, t_{i+1}) \land t_n = s_{r+1}]]
\]

after replacing \(\exists n \leq r \cdots \) by \(\bigvee_{r=0}^{\infty} \cdots \) we get a Quantified Boolean Formula (QBF), which is much harder to prove un/satisfiable (PSPACE complete).
Visualization of Reformulation

\[\forall s_0, \ldots, s_{r+1} [(I(s_0) \land \bigwedge_{i=0}^{r} T(s_i, s_{i+1})) \rightarrow \bigvee_{0 \leq i < j \leq r+1} s_i = s_j] \]

(we allow \(t_{i+1} \) to be identical to \(t_i \) in the lower path)

Reoccurrence Radius/Diameter

• we can not find the real radius / diameter with SAT efficiently

• over approximation idea:
 – drop requirement that there is no shorter path
 – enforce different (no reoccurring) states on single path instead

reoccurrence diameter:

length of the longest path without reoccurring states

reoccurrence radius:

length of the longest initialized path without reoccurring states

Determination of Reoccurrence Diameter

reformulation:

the reoccurrence radius is the length of the longest path from initial states without reoccurring states
(one may further assume that only the first state is an initial state)

The reoccurring radius is the minimal \(r \) which makes the following formula valid:

\[\forall s_0, \ldots, s_{r+1} [(I(s_0) \land \bigwedge_{i=0}^{r} T(s_i, s_{i+1})) \rightarrow \bigvee_{0 \leq i < j \leq r+1} s_i = s_j] \]

this is a propositional formula and can be checked by SAT
(exercise: reoccurrence radius/diameter is an upper bound on real radius/diameter)

Bad Example for Reoccurrence Radius

radius 1, reoccurrence radius \(n \)
Bounded Semantics with Loop

(E)LTL formula in NNF

let the path \(\pi \) be a \((k, l)\) lasso

\[
\pi \models_{i}^k p \iff p \in L(\pi(i))
\]

\[
\pi \models_{i}^k \neg p \iff p \notin L(\pi(i))
\]

\[
\pi \models_{i}^k f \land g \iff \pi \models_{i}^k f \text{ and } \pi \models_{i}^k g
\]

\[
\pi \models_{i}^k Xf \iff \left\{ \begin{array}{ll}
\pi \models_{i}^k f & \text{if } i = k \\
\pi \models_{i+1}^k f & \text{else}
\end{array} \right.
\]

\[
\pi \models_{i}^k Gf \iff \wedge_{j = \min(i, l)}^k \pi \models_{i}^j f
\]

\[
\pi \models_{i}^k Ff \iff \vee_{j = \min(i, l)}^k \pi \models_{i}^j f
\]

Bounded Semantics

- **definition:**

 \[
 \pi \models_{i}^k f \iff \pi \models_{0}^1 f
 \]

- **bounded semantics approximates real semantics:**

 \[
 \pi_k \models f \implies \pi \models f \text{ for all } k
 \]

- **(theoretical) completeness:**

 if \(\pi \models f \) then there exists \(k \) with \(\pi_k \models f \)

note: negate original property first (e.g. \(\mathbf{AG}p \rightarrow \mathbf{EF}p \))

- \(\text{ALTL} \rightarrow \text{ELTL} \)
- counter example \(\rightarrow \) witness
- **bounded** witness is also a non-bounded witness

Bounded Semantics without Loop

ELTL formula in NNF

there is no \(l \) for which path \(\pi \) is a \((k, l)\) lasso

\[
\pi \models_{i}^k p \iff p \in L(\pi(i))
\]

\[
\pi \models_{i}^k \neg p \iff p \notin L(\pi(i))
\]

\[
\pi \models_{i}^k f \land g \iff \pi \models_{i}^k f \text{ and } \pi \models_{i}^k g
\]

\[
\pi \models_{i}^k Xf \iff \left\{ \begin{array}{ll}
\pi \models_{i}^k f & \text{if } i = k \\
\pi \models_{i+1}^k f & \text{else}
\end{array} \right.
\]

\[
\pi \models_{i}^k Gf \iff \false
\]

\[
\pi \models_{i}^k Ff \iff \false
\]

Translation of Bounded Semantics to SAT

- two recursive translations from (E)LTL in NNF for fixed \(k \):

 - \([\cdot]_{i}^k \) assumes \((k, l)\)-loop

 - \([\cdot]_{i}^k \) assumes that no \((k, l)\)-loop exists for all \(l \)

- add time frame expansion of transition relation:

 \[
 I(s_0) \land T(s_0, s_1) \land \cdots \land T(s_{k-1}, s_k)
 \]

- add \(\text{loop}_{k}(l) \) constraint for looping translation:

 \[
 \text{loop}_{k}(l) := T(s_k, s_l)
 \]

- add \(\text{noloop}_{k} \) constraint for non-looping translation:

 \[
 \text{noloop}_{k} := \bigvee_{\text{if } l=0}^{k} \text{loop}_{k}(l)
 \]
Looping Translation

\[
\begin{align*}
 i[p]_k^i & := p(s_i) \\
 i[\neg p]_k^i & := \neg p(s_i) \\
 i[f \land g]_k^i & := i[f]_k^i \land i[g]_k^i \\
 i[X f]_k^i & := i[f]_{next(i)}^i \\
 i[G f]_k^i & := \bigwedge_{j=\min(l,i)}^k i[f]_k^j \\
 i[F f]_k^i & := \bigvee_{j=\min(l,i)}^k i[f]_k^j \\
 next(i) & := \begin{cases}
 i + 1 & \text{if } i < k \\
 l & \text{else}
 \end{cases}
\end{align*}
\]

Non-Looping Translation

\[
\begin{align*}
 [p]_k^i & := p(s_i) \\
 [\neg p]_k^i & := \neg p(s_i) \\
 [f \land g]_k^i & := [f]_k^i \land [g]_k^i \\
 [X f]_k^i & := \begin{cases}
 [f]_{i+1}^i & \text{if } i < k \\
 \text{false} & \text{else}
 \end{cases} \\
 [G f]_k^i & := \text{false} \\
 [F f]_k^i & := \bigvee_{j=i}^k [f]_k^j
\end{align*}
\]

Translation

\[
[K, f]_k := \text{noloop}_k \land \bigvee_{l=0}^k \text{loop}_k(l) \land i[f]_k^0
\]

- **Theorem:** $K \models Ef \iff \exists k [K, f]_k$ satisfiable

- $i[1]_k^i$ and $[1]_k^i$ are linear in k if subformulae are shared
 - unique table for automatic sharing syntactically equivalent formulae
 - implemented as hash table (keys are pairs of formulae ids)

- more complex and quadratic translations for R and U