If y has never been used to derive a conflict, then skip \bar{y} case.

Immediately *jump back* to the \bar{x} case – assuming x was used.
Split on -3 first (bad decision).
Split on -1 and get first conflict.
Backjumping Example

Regularly backtrack and assign 1 to get second conflict.
Backjumping Example

Backtrack to root, assign 3 and derive same conflicts.
Assignment -3 does not contribute to conflict.
So just *backjump* to root before assigning 1.
• backjumping helps to *recover* from bad decisions
 – bad decisions are those that do not contribute to conflicts
 – without backjumping same conflicts are generated in second branch
 – with backjumping the second branch of bad decisions is just skipped

• particularly useful for unsatisfiable instances
 – in satisfiable instances good decisions will guide us to the solution

• with backjumping many bad decisions increase search space roughly quadratically instead of exponentially with the number of bad decisions
• the implication graph maps inputs to the result of resolutions

• backward from the empty clause all contributing clauses can be found

• the variables in the contributing clauses are contributing to the conflict

• important optimization, since we only use unit resolution
 – generate graph only for resolutions that result in unit clauses
 – the assignment of a variable is result of a decision or a unit resolution
 – therefore the graph can be represented by saving the *reasons* for assignments with each assigned variable
General Implication Graph as Hyper-Graph

(edges of directed hyper graphs may have multiple source and target nodes)
graph becomes an ordinary (non hyper) directed graph

- Simplifies implementation:
 - Store a pointer to the reason clause with each assigned variable
 - Decision variables just have a null pointer as reason
 - Decisions are the roots of the graph
• can we *learn* more from a conflict?

 – backjumping does not *fully* avoid the occurrence of the same conflict

 – the same (partial) assignments may generate the same conflict

• generate *conflict clauses* and add them to CNF

 – the literals contributing to a conflict form a partial assignment

 – this partial assignment is just a conjunction of literals

 – its negation is a clause (implied by the original CNF)

 – adding this clause avoids this partial assignment to happen again
• observation: current decision always contributes to conflict
 – otherwise BCP would have generated conflict one decision level lower
 – conflict clause has (exactly one) literal assigned on current decision level

• instead of backtracking
 – generate and add conflict clause
 – undo assignments as long conflict clause is empty or unit clause
 (in case conflict clause is the empty clause conclude unsatisfiability)
 – resulting assignment from unit clause is called conflict driven assignment
We use a version of the DIMACS format.

Variables are represented as positive integers.

Integers represent literals.

Subtraction means negation.

A clause is a zero terminated list of integers.

CNF has a good cut made of variables 3 and 4 (cf Exercise 4 + 5).

(but we are going to apply DP with learning to it)
DP with Learning Run 1 (3 as 1st decision)

\[l = 0 \] (no unit clause originally, so no implications)

\[l = 1 \]

unit clause \(-3\) is generated as learned clause and we backtrack to \(l = 0 \)

since \(-3\) has a real unit clause as reason, an empty conflict clause is learned
$l = 0$ (no unit clause originally, so no implications)

(no implications on this decision level either)

since FIRST clause was used to derive 2, conflict clause is $(1 - 3)$

backtrack to $l = 1$ (smallest level for which conflict clause is a unit clause)
$l = 0$ (no unit clause originally, so no implications)

... ...

1st conflict clause

learned conflict clause is the unit clause 1

backtrack to decision level $l = 0$
since the learned clause is the empty clause, conclude unsatisfiability
$l = 0$ (no unit clause originally, so no implications)

$\vdash \neg 6$ (no implications on this decision level either)

$\neg 6$ as decision

$\vdash \neg 1$ as decision

$\vdash \neg 2$ as decision

$\vdash \neg 3$ as decision

$\vdash \neg 1$ as decision

$\vdash \neg 2$ as decision

$\vdash \neg 3$ as decision

learn the unit clause $\neg 3$ and BACKJUMP to decision level $l = 0$
finally the empty clause is derived which proves unsatisfiability
```c
int sat (Solver solver)
{
    Clause conflict;

    for (;;)
    {
        if (bcp_queue_is_empty (solver) && !decide (solver))
            return SATISFIABLE;

        conflict = deduce (solver);

        if (conflict && !backtrack (solver, conflict))
            return UNSATISFIABLE;
    }
}
```
```c
int
backtrack (Solver solver, Clause conflict)
{
    Clause learned_clause; Assignment assignment; int new_level;

    if (decision_level(solver) == 0)
        return 0;

    analyze (solver, conflict);
    learned_clause = add (solver);

    assignment = drive (solver, learned_clause);
    enqueue_bcp_queue (solver, assignment);

    new_level = jump (solver, learned_clause);
    undo (solver, new_level);

    return 1;
}
```
• conflict clause: obtained by backward resolving empty clause with reasons
 – start at clause which has all its literals assigned to false
 – resolve one of the false literals with its reason
 – invariant: result still has all its literals assigned to false
 – continue until user defined size is reached

• gives a nice correspondence between resolution and learning in DP
 – allows to generate a resolution proof from a DP run
 – implemented in RELSAT solver
a simple cut always exists: set of roots (decisions) contributing to the conflict
Unique Implication Points (UIP)

UIP = articulation point in graph decomposition into biconnected components
(simply a node which, if removed, would disconnect two parts of the graph)
Detection of UIPs

- can be found by graph traversal in the order of made assignments

- *trail* respects this order

- traverse reasons of variables on trail starting with conflict

- count “open paths”
 (initially size of clause with only false literals)

- if all paths converged at one node, then UIP is found

- decision of current decision level is a UIP and thus a *sentinel*
• assume a non decision UIP is found

• this UIP is part of a potential cut

• graph traversal may stop (everything *behind* the UIP is ignored)

• negation of the UIP literal constitutes the conflict driven assignment

• may start new clause generation (UIP replaces conflict)

 – each conflict may generate multiple learned clauses

 – however, using only the first UIP encountered seems to work best
• intuitively is is important to localize the search (cf cutwidth heuristics)

• cuts for learned clauses may only include UIPs of current decision level

• on lower decision levels an arbitrary cut can be chosen

• multiple alternatives
 – include all the roots contributing to the conflict
 – find minimal cut (heuristically)
 – cut off at first literal of lower decision level (works best)
• “second order” because it involves statistics about the search

• Variable State Independent Decaying Sum (VSIDS) decision heuristic (implemented in CHAFF and LIMMAT solver)

• VSIDS just counts the occurrences of a literals in conflict clauses

• literal with maximal count (score) is chosen

• score is multiple by a factor $f < 1$ after a certain number of conflicts occurred (this is the “decaying” part and also called *rescoring*)

• emphasizes (negation of) literals contributing recently to conflicts (*localization*)
• observation:
 – recently added conflict clauses contain all the good variables of VSIDS
 – the order of those clauses is not used in VSIDS

• basic idea:
 – simply try to satisfy recently learned clauses first
 – use VSIDS to chose the decision variable for one clause
 – if all learned clauses are satisfied use other heuristics
 – intuitively obtains another order of localization (no proofs yet)

• results are mixed, but in general slightly more robust than just VSIDS
• for satisfiable instances the solver may get stuck in the unsatisfiable part

 – even if the search space contains a large satisfiable part

• often it is a good strategy to abandon the current search and restart

 – restart after the number of decisions reached a restart limit

• avoid to run into the same dead end

 – by randomization (either on the decision variable or its phase)

 – and/or just keep all the learned clauses

• for completeness dynamically increase restart limit
Other Types of Learning

- similar to look-ahead heuristics: polynomially bounded search
 - may be recursively applied (however, is often too expensive)

- Stålmarck’s Method
 - works on triplets (intermediate form of the Tseitin transformation):
 \[x = (a \land b), \quad y = (c \lor d), \quad z = (e \oplus f) \] etc.
 - generalization of BCP to (in)equalities between variables
 - test rule splits on the two values of a variable

- Recursive Learning (Kunz & Pradhan)
 - works on circuit structure (derives implications)
 - splits on different ways to justify a certain variable value
Stålmarck’s Method

1. BCP over (in)equalities:
 \[
 \begin{align*}
 \frac{x = y}{z = 0} & \quad \frac{x = 0}{z = y}
 \end{align*}
 \]
 etc.

2. structural rules:
 \[
 \begin{align*}
 \frac{x = (a \lor b)}{y = (a \lor b)}
 \end{align*}
 \]
 etc.

3. test rule:
 \[
 \begin{align*}
 \{x = 0\} \cup E & \quad \{x = 1\} \cup E \\
 \Downarrow & \quad \Downarrow
 \end{align*}
 \]
 \[
 \begin{align*}
 E_0 \cup E & \quad E_1 \cup E \\
 \Downarrow
 \end{align*}
 \]
 \[
 \begin{align*}
 (E_0 \cap E_1) \cup E
 \end{align*}
 \]

Assume \(x = 0 \), BCP and derive (in)equalities \(E_0 \), then assume \(x = 1 \), BCP and derive (in)equalities \(E_1 \). The intersection of \(E_0 \) and \(E_1 \) contains the (in)equalities valid in any case.
Stålmarck’s Method Recursively

\[
\begin{align*}
 x &= 0 \\
 &\Downarrow \\
 y &= 0 & y &= 1 \\
 &\Downarrow & \Downarrow \\
 E_{00} & E_{01} & E_{10} & E_{11} \\
 \quad & \quad & \quad & \quad \\
 E_0 & E_1 \\
 \quad & \quad \\
 E
\end{align*}
\]

(we do not show the (in)equalities that do not change)
• recursive application
 – depth of recursion bounded by number of variables
 – complete procedures (determines satisfiability or unsatisfiability)
 – for a fixed (constant) recursion depth k polynomial!

• k-saturation:
 – apply split rule on recursively up to depth k on all variables
 – 0-saturation: apply all rules accept test rule (just BCP: linear)
 – 1-saturation: apply test rule (not recursively) for all variables
 (until no new (in)equalities can be derived)