
Incremental Preprocessing Methods
for Use in BMC

S. Kupferschmid, M. Lewis, T. Schubert and B. Becker

{skupfers,lewis,schubert,becker}@informatik.uni-freiburg.de

27.07.10 Incremental Preprocessing Methods for Use in BMC 2

Outline

 BMC, Craig Interpolation
 Accelerating SAT-Based BMC
 Our Approach
 Results
 Conclusion

27.07.10 Incremental Preprocessing Methods for Use in BMC 3

Bounded Model Checking (BMC)

 We use BMC to verify safety properties

 BMC inputs:
- Initial state
- Sequential circuit
- Property

 Question: Can we reach after steps?

i
n

mm

l

inputs

latches

Pk

T i ,i1

I 0

¬Pk k

T i ,i1

27.07.10 Incremental Preprocessing Methods for Use in BMC 4

BMC (cont'd)

 Unrolling the circuit k times
i0 n

i1 n
i k−1 n

T 0,1 T 1,2 T k−1, k

I 0 ¬P k

 Encode behaviour as a SAT problem
BMCk=I 0∧T 0,1∧⋯∧T k−1, k∧¬Pk

 Satisfiable iff circuit has error trace of length k
 If no error trace is found, increment unroll depth

27.07.10 Incremental Preprocessing Methods for Use in BMC 5

Craig Interpolation

 Craig interpolant theorem:
- Let and be two clause sets with the property

• is valid

- Then there exits a Craig interpolant
• contains only global variables

•

•

 Craig interpolant is an overapproximation:

A B
A¬B

C

AC
C

C¬B

C
A B

27.07.10 Incremental Preprocessing Methods for Use in BMC 6

 Apply fixed point check (FPC)
- Check whether the contains new states
- If valid the system is safe
- If not valid inc. unroll depth

BMC + Craig Interpolation

 Craig interpolants can find a fixed point of
reachable states [McMillan 03]

I 0∧T 0,1∧T 1,2∧⋯∧T k−1, k∧¬Pk

A B
unsatisfiable

C1
1

overapprox. of reachable states

I 0
C0

1

C0
1
 I 0

C1
1

27.07.10 Incremental Preprocessing Methods for Use in BMC 7

BMC + Craig Interpolation (cont'd)

 Inc. unroll depth I 0∧T 0,1∧T 1,2∧⋯∧T k−1, k∧¬Pk

A B

C1
1

C0
1
∧T 0,1∧T 1,2∧⋯∧T k−1, k∧¬Pk

 If unsat. compute next
interpolant and FPC C1

2

I 0

C0
1

C0
2
 I 0∨C0

1

C0
2

 If satisfiable the counter example is maybe spurious
- Perform a reset

I 0∧T 0,1∧T 1,2∧⋯∧T k−1, k∧T k ,k1∧¬Pk1

A B

27.07.10 Incremental Preprocessing Methods for Use in BMC 8

Accelerating BMC

 Incremental SAT-Solver [Een, Sörensson 03]
- Reuse of learnt conflict clauses

- Reuse of literal activities

 Preprocessing SAT-instances [Een, Biere 05]
- Less clauses, less variables
- Resolution, subsumption, blocked clause elim.

 Problem: How can we combine both?

27.07.10 Incremental Preprocessing Methods for Use in BMC 9

Preprocessing in SAT

 CNF simplification:
- Elimination of variables (resolution)

- Literal elimination (self subsumption)

- Clause deletion (subsumption, blocked clause
elimination)

 Issues with incremental SAT solvers:
- Blocked clauses may not stay blocked

- New clauses containing previously eliminated variables
may be added

27.07.10 Incremental Preprocessing Methods for Use in BMC 10

Our Approach

 Idea: Do not modify the “interface” of the circuit
 Preprocess the different BMC-parts
 Don't delete variables contained in future clauses

- In BMC these are the latch variables
- E.g. only literals that are not contained in future

clauses are tested during blocked clause elim.

T i ,i1Doing this we can apply preprocessing to

and can still use the simplified to create
the correct BMC unrollings

T i ,i1

27.07.10 Incremental Preprocessing Methods for Use in BMC 11

Our Approach (cont'd)

 Preprocessor with don't touch literals

i
n

l i1
li

Don't touch
literals

T i ,i1

i
n '

l i1
li

T i ,i1
simp

27.07.10 Incremental Preprocessing Methods for Use in BMC 12

Our Approach (cont'd)

 Independent of the gen. of Craig interpolants

A B
I 0∧T 0,1

simp
∧T1,2

simp
∧⋯∧T k−1,k

simp
∧¬P k

 If unsat we compute C with:
 We know , and hence:

-

-

AC ,C¬B

T i ,i1T i ,i1
simp

I 0∧T 0,1 I 0∧T 0,1
simp

C

C¬T 1,2
simp∧⋯∧T k−1,k

simp ∧¬Pk ≡

C¬T 1,2
simp∨⋯∨¬T k−1,k

simp ∨Pk
C¬T 1,2∨⋯∨¬T k−1,k∨Pk

27.07.10 Incremental Preprocessing Methods for Use in BMC 13

Workflow

Parse problem
(aiger-format)

Parse problem
(aiger-format)

Compute don't
touch literals

Compute don't
touch literals

PreprocessPreprocess
Input:

Output:

PreprocessPreprocess
Input:

Output:

T i ,i1 ,¬Pi

T i ,i1
simp ,¬Pi

simp

Create BMC-instance
in an incremental way
Input:
Output: clauses

Create BMC-instance
in an incremental way
Input:
Output: clauses

k , I i ,T i ,i1
simp ,¬P i

simp

Solve using SAT-Solver
(BMC + Craig)

Solve using SAT-Solver
(BMC + Craig)

?
inc. depth

counter example
 found

fixed
point

27.07.10 Incremental Preprocessing Methods for Use in BMC 14

Advantages
 Only is preprocessed
 We can use an incremental SAT-solver
 Preprocessing does not affect the generation

of Craig interpolants
- Only resolution on “global variables” influences the

gen. of interpolants (these are don't touch literals)

 Applicable to k-induction
 Preprocess more than one transition step

T i ,i1

i i n

l i1
li

T i ,i1 T i1,i2
l i2

i i1 n

li

T i ,i2

i i n '
i i1 n ' '

l i2

27.07.10 Incremental Preprocessing Methods for Use in BMC 15

Experimental Results

 Our implementation:
- Preprocessor taken from MiraXT

- BMC tool based on SAT solver MiraXT

- BMC + Craig is based on MiniSAT2
- Total time is split between BMC and BMC + Craig

 Setup
- 645 benchmarks taken from HWMCC'08

- Quadcore Intel Q9450 processor @ 2.66GHz

- 4GB of RAM
- Timeout 900sec

27.07.10 Incremental Preprocessing Methods for Use in BMC 16

Preprocessing Results

Solver wo
preprocessing

Solver w
preprocessing

#clauses 8,723,774 3,915,462

#variables 5,462,710 1,710,189

time (sec) 9,345.07 4,540.71

 With don't touch literals the reduction of
clauses/variables is still very good

 Average time was < 0.2s
- Max. preprocessing time was only 5.8s

 Overall solving time was divided by 2

27.07.10 Incremental Preprocessing Methods for Use in BMC 17

Experimental Results

Our Solver ABC TIP

#uns solved 282 314 294

#sat solved 253 238 246

#total solved 535 552 540

total time (sec) 109,730.24 87,622.84 102,843.37

 Comparison to the winners of the last HWMCC
- TIP found most sat problems

- ABC found most uns problems

27.07.10 Incremental Preprocessing Methods for Use in BMC 18

Experimental Results (cont'd)
Benchmark S/U #Vars. #Cla. Our Solver ABC TIP

intel048 - 261,275 685,929 TO TO TO

intel013 - 193,730 506,572 TO TO TO

intel039 sat 127,308 328,436 370.83 TO TO

intel040 sat 125,386 322,616 379.48 TO TO

intel041 sat 125,377 324,013 376.26 TO TO

intel038 sat 122,600 317,149 371.68 TO TO

intel042 sat 122,375 316,488 423.18 TO TO

intel028 - 107,502 280,941 TO TO TO

intel043 sat 104,349 272,697 624.94 TO TO

intel036 sat 98,327 262,244 590.42 TO TO

 Our Solver (16/24), TIP (4/24), ABC (0/24)

27.07.10 Incremental Preprocessing Methods for Use in BMC 19

Comparing Benchmark Families

Bench. Fam. Best Solver

139* Our Solver

ab* ABC

bc57* TIP

bj* ABC

br* Our Solver

cmu* Our Solver

count* Our Solver

cs* Our Solver

dm* Our Solver

eijk* ABC

intel* Our Solver

irst* TIP

Bench. Fam. Best Solver

ken* Our Solver

mutex* Our Solver

nec* Our Solver

nus* Our Solver

pc* Our Solver

pdt* ABC

prod* Our Solver

ring* TIP

short* TIP

srg* Our Solver

texas* TIP

vis* ABC

 Our Solver (14/24), TIP (5/24), ABC (5/24)

27.07.10 Incremental Preprocessing Methods for Use in BMC 20

Conclusion

 Preprocessing with don't touch literals
- Accelerates the verification process

- Independent of the gen. of Craig interpolants

 Our tool is a first prototype
- Optimizations are still possible
- First results are promising

 To do:
- Apply preprocess to more than one transition step
- Test our approach with k-induction

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

