Incremental Preprocessing Methods
for Use in BMC

S. Kupferschmid, M. Lewis, T. Schubert and B. Becker
{skupfers,lewis,schubert,becker}@informatik.uni-freiburg.de

Albert-Ludwigs-Universitét Freiburg

CARL

VON

OSSIETZKY
universitat|OLDENBURG

UNI
FREIBURG

UNIVERSITAT FREIBURG

BMC, Craig Interpolation
Accelerating SAT-Based BMC
Our Approach

Results

Conclusion

mental Preprocessing Methods for Use in BMC

Bounded Model Checking (BMC)

We use BMC to verify safety properties

BMC inputs: n Inputs
- Initial state I,

- Sequential circuit T, m

- Property P, E
1 latches

Question: Can we reach —P, after k steps?

27.07.10 Incremental Preprocessing Methods for Use in BMC

BMC (cont'd)

Unrolling the circuit k times

Encode behaviour as a SAT problem
BMC,=I ATy, A--AT,_, AP,

Satisfiable iff circuit has error trace of length k
If no error trace Is found, increment unroll depth

27.07.10 ncremental Preprocessing Methods for Use in BMC 4

Craig Interpolation

Craig interpolant theorem:
- Let Aand B be two clause sets with the property
A= "B is valid

- Then there exits a Craig interpolant C

C contains only global variables
A=>C

C=>"B
Craig Interpolant Is an overapproximation:

27.07.10 ncremental Preprocessing Methods for Use in BMC b

BMC + Craig Interpolation

Craig interpolants can find a fixed point of
reachable states [McMillan 03]

A B
IO/\TO,1+T1,2/\---/\T,<Lk/\ﬁPk unsatisfiable

!

C, overapprox. of reachable states

Apply fixed point check (FPC)
- Check whether the C! contains new states C,= I,
- If valid the system is safe

- If not valid inc. unroll depth ﬁ

BMC + Craig Interpolation (cont'd)

A B
Inc. unroll depth IO/\TO,1+T1,2/\.”/\TI<1,k/_'Pk

C,
C(l)/\To,1+T1,2/\"'/\Tk1,k/_'Pk
If unsat. compute next
Interpolant and FPC C?

C:=I,vVC ﬁ’a

If satisfiable the counter example is maybe spurious

- Performareset A B
IOAT0,1+T1,2/\"'/\Tk1,k/\Tk,k+1/_'Pk+1

27.07.10 ncremental Preprocessing Methods for Use in BMC

Accelerating BMC

Incremental SAT-Solver [Een, Sorensson 03]
- Reuse of learnt conflict clauses
- Reuse of literal activities

Preprocessing SAT-instances [Een, Biere 05]
- Less clauses, less variables
- Resolution, subsumption, blocked clause elim.

Problem: How can we combine both?

27.07.10 ncremental Preprocessing Methods for Use in BMC 8

Preprocessing in SAT

CNF simplification:

- Elimination of variables (resolution)

- Literal elimination (self subsumption)

- Clause deletion (subsumption, blocked clause
elimination)

Issues with incremental SAT solvers:

- Blocked clauses may not stay blocked

- New clauses containing previously eliminated variables
may be added

27.07.10 ncremental Preprocessing Methods for Use in BMC 9

Our Approach

Idea: Do not modify the “interface” of the circuit
Preprocess the different BMC-parts

Don't delete variables contained In future clauses
- In BMC these are the latch variables

- E.g. only literals that are not contained in future
clauses are tested during blocked clause elim.

Z> Doing this we can apply preprocessing to T’ .,
and can still use the simplified T, ;.,to create
the correct BMC unrollings

27.07.10 Incremental Preprocessing Methods for Use in BMC 10

Our Approach (cont'd)

Preprocessor with don't touch literals

Don'ttouch - -
literals :

27.07.10 ncremental Preprocessing Methods for Use in BMC 11

Our Approach (cont'd)

Independent of the gen. of Cralg interpolants

A . . B B
Io/\ Tgfrlnp Tirznp ASRA T?Tlf,k N\ _'Pk

If unsat we compute C with: A=C,C=-B
simp .
We know Tl.,l.+1:.>Tl.,l.+1 , and hence:
- I AT, =T AT, "=C
) C:>_'<Til,r;p/\"'/\T;;Tll),k/_'PQE
C=>-T"V---V-T;."™ VP>
C=-T,,vV---v-T,_,, VP,

27.07.10 ncremental Preprocessing Methods for Use in BMC 12

Workftlow

/Create BMC-instance

FETEE [l S T » In an incremental way
(aiger-format) Input: kI, TS™ —psm

YT q,i+1 i

Output: clauses

Solve using SAT-Solver
(BMC + Craig)

Compute don't
touch literals

/Preprocess fixed inc. depth
Input: T, ,,~P, point

simp simp
Output: T/, , 7 P, counter example
found

27.07.10 Incremental Preprocessing Methods for Use in BMC 13

Advantages

OnlyT, ;. IS preprocessed
We can use an incremental SAT-solver

Preprocessing does not affect the generation
of Craig interpolants

- Only resolution on “global variables” influences the
gen. of interpolants (these are don't touch literals)

Applicable to k-induction
Preprocess more than one transition ste

— -

) I T2 I*
li+2 li l

27.07.10 ncremental Preprocessing Methods for Use in BMC 14

i+2

Experimental Results

Our implementation:

Preprocessor taken from MiraXT

BMC tool based on SAT solver MiraXT

BMC + Cralg Is based on MiniSAT2

Total time is split between BMC and BMC + Craig

Setup

- 645 benchmarks taken from HWMCC'08

- Quadcore Intel Q9450 processor @ 2.66GHz
- 4GB of RAM

- Timeout 900sec

27.07.10 ncremental Preprocessing Methods for Use in BMC 15

Preprocessing Results

Solver wo Solver w
preprocessing preprocessing

#variables 5,462,710 1,710,189

With don't touch literals the reduction of
clauses/variables is still very good

Average time was < 0.2s
- Max. preprocessing time was only 5.8s

Overall solving time was divided by 2

27.07.10 Incremental Preprocessing Methods for Use in BMC 16

Experimental Results

Comparison to the winners of the last HWMCC
- TIP found most sat problems
- ABC found most uns problems

#sat solved

total time (sec) 109,730.24 87,622.84 102,843.37

27.07.10 Incremental Preprocessing Methods for Use in BMC 17

Experimental Results (cont'd)

enchmar S0 s 7oa owsaver Ac | T
s zsiars w0 To T 10

intel013 - 193,730 506,572

intel040 sat 125,386 322,616 379.48

intel038 sat 122,600 317,149 371.68

intel028 - 107,502 280,941

intel036 sat 98,327 262,244 590.42

Our Solver (16/24), TIP (4/24), ABC (0/24)

Incremental Preprocessing Methods for Use in BMC

Comparing Benchmark Families

ab* ABC

cmu* Our Solver
count OurSolver
cs* Our Solver
dmt OurSolver
eijk* ABC
iner OurSoier
irst* TIP

mutex* Our Solver

nus* Our Solver

pdt*

ring*

Our Solver

Vis* ABC

Our Solver (14/24), TIP (5/24), ABC (5/24)

27.07.10

Incremental Preprocessing Methods for Use in BMC

19

Conclusion

Preprocessing with don't touch literals
- Accelerates the verification process
- Independent of the gen. of Craig interpolants

Our tool Is a first prototype
- Optimizations are still possible
- First results are promising

To do:

- Apply preprocess to more than one transition step
- Test our approach with k-induction

27.07.10 ncremental Preprocessing Methods for Use in BMC 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

