

Spec#Spec#

Andreas VidaAndreas Vida

MotivationMotivation

 Correct and maintainable softwareCorrect and maintainable software
 Cost effective software productionCost effective software production
 Implicit assumptions easily brokenImplicit assumptions easily broken

→ Need more f→ Need more formal specification ormal specification
 Integration into a Integration into a popularpopular language language

What has been done beforeWhat has been done before

 Pioneering languagesPioneering languages
• GipsyGipsy
• EuclidEuclid

 More recent developmentsMore recent developments
• EiffelEiffel
• SPARKSPARK
• JMLJML

Now: Spec#Now: Spec#

 Extension of C# (Microsoft Research) Extension of C# (Microsoft Research)
that provides:that provides:
• A sound programming methodologyA sound programming methodology
• Tools to enforce this methodologyTools to enforce this methodology
• Smooth adoption path for new-comersSmooth adoption path for new-comers

Components of Spec#Components of Spec#

 Boogie static-verifierBoogie static-verifier
 Spec# compilerSpec# compiler

• Emits run-time checksEmits run-time checks
 Integration into Visual StudioIntegration into Visual Studio

• IntelliSense code completionIntelliSense code completion
• Syntax HighlightingSyntax Highlighting

Spec# language features Spec# language features

 non-null typesnon-null types
 checked exceptionschecked exceptions
 class contracts (object invariants)class contracts (object invariants)
 method contractsmethod contracts

• pre- and (exceptional) postconditionspre- and (exceptional) postconditions
 frame conditionsframe conditions
 inheritance of specificationinheritance of specification

Non-null typesNon-null types
 Notation: T!Notation: T!
 Constructors need initialiser-fields for each non-Constructors need initialiser-fields for each non-

null fieldnull field
→ → evaluated before base-class-constructor call!evaluated before base-class-constructor call!

classclass Student: Person { Student: Person {
Transcript! t;Transcript! t;
publicpublic Student(string name, EnrollmentInfo! e): Student(string name, EnrollmentInfo! e):
t(t(newnew Transcript(e)), Transcript(e)), basebase(name)(name)
{ /*…*/}{ /*…*/}
//…//…

}}

Checked vs. unchecked Checked vs. unchecked
exceptionsexceptions

 C# only has unchecked exceptionsC# only has unchecked exceptions
 Spec# in this way similar to JavaSpec# in this way similar to Java
 Considers 2 types of exceptions:Considers 2 types of exceptions:

• Admissible failures Admissible failures
→→ interface: ICheckedException interface: ICheckedException

• Client failures, observed program errors Client failures, observed program errors
→ derived from: Exception→ derived from: Exception

Method contractsMethod contracts
 Preconditions example:Preconditions example:

classclass ArrayList { ArrayList {
publicpublic virtualvirtual voidvoid Insert(Insert(intint index, index, objectobject
value)value)
requiresrequires 0 <= index && index <= Count; 0 <= index && index <= Count;
requiresrequires !IsReadOnly && !IsFixedSize; !IsReadOnly && !IsFixedSize;
{ /* … */ }{ /* … */ }
//…//…

}}

PreconditionsPreconditions
 Enforced by run-time checks that throw a Enforced by run-time checks that throw a

RequiresViolationExceptionRequiresViolationException
 An alternative exception type can be specified An alternative exception type can be specified

using an using an otherwiseotherwise clause: clause:

 classclass A { A {
publicpublic voidvoid Foo(int a) Foo(int a)
requiresrequires a > 0 a > 0
otherwiseotherwise ArgumentOutOfRangeException; ArgumentOutOfRangeException;
{ /* … */ }{ /* … */ }

}}

PostconditionsPostconditions

 ArrayList.Insert’s postconditions:ArrayList.Insert’s postconditions:
ensuresensures Count == Count == oldold(Count) + 1;(Count) + 1;

ensuresensures value == value == thisthis[index];[index];

ensuresensures Forall{ Forall{ intint i i inin 0: index; 0: index; oldold((thisthis[i]) == [i]) == thisthis[i]};[i]};

ensuresensures Forall{ Forall{ intint i i inin index: index: oldold(Count); (Count); oldold(this[i]) == (this[i]) == thisthis[i+1]}[i+1]}

 Complex quantified expressions supportedComplex quantified expressions supported
 Boogie attempts to verify postconditionsBoogie attempts to verify postconditions
 Eiffel’s mechanism: Eiffel’s mechanism: oldold() are saved away () are saved away

at the method’s entranceat the method’s entrance

Exceptional postconditionsExceptional postconditions
 Methods have a throws-set (as in Java)Methods have a throws-set (as in Java)
 throws clause (only for checked exceptions) can throws clause (only for checked exceptions) can

be combined with postconditions:be combined with postconditions:

voidvoid ReadToken(ArrayList a) ReadToken(ArrayList a)
 throwsthrows EndOfFileException EndOfFileException
 ensuresensures a.Count == old(a.Count); a.Count == old(a.Count);
{ /*… */ }{ /*… */ }

 ““Foolproof”: if static checks can’t ensure that the Foolproof”: if static checks can’t ensure that the
exception is checked then run-time checks are exception is checked then run-time checks are
emitted emitted

Class contractsClass contracts
 Object invariants:Object invariants:

classclass AttendanceRecord { AttendanceRecord {
Student[]! students;Student[]! students;
boolbool[]! absent;[]! absent;
invariantinvariant students.Length == students.Length ==

absent.Length; absent.Length;
 /*…*/ /*…*/

}}
 Often need to be temporarily broken Often need to be temporarily broken

→ → do this explicitely:do this explicitely:
exposeexpose (variable) { … }; (variable) { … };

Frame conditionsFrame conditions
 Restrict which part of the program state Restrict which part of the program state

can be modified by a methodcan be modified by a method
classclass C { C {

intint x, y; x, y;
voidvoid M() M() modifiesmodifies x; x;
{ x++; }{ x++; }

}}
 How to change private parts of an outside How to change private parts of an outside

class? class? → w→ wildcards: ildcards:
modifiesmodifies this ^ ArrayList; this ^ ArrayList;

 Still a problem: aggregate objectsStill a problem: aggregate objects

Run-time checkingRun-time checking

 Pre- and postconditions are turned Pre- and postconditions are turned
into (tagged) inlined codeinto (tagged) inlined code

 Conditions violated at run-time Conditions violated at run-time
→ appropriate → appropriate contract exceptioncontract exception

 1 method is added to each class 1 method is added to each class
using invariantsusing invariants

 Object fields added:Object fields added:
• invariant levelinvariant level
• owner of an objectowner of an object

Boogie: Static verificationBoogie: Static verification

 Intermediate language Intermediate language →→ BoogiePL BoogiePL
 Inference systemInference system

• Obtains properties (loop invariants) then Obtains properties (loop invariants) then
adds assert/assume statementsadds assert/assume statements

 Creates acyclic control flow graph by Creates acyclic control flow graph by
introducing havoc statementsintroducing havoc statements

 Calls the “Simplify” theorem proverCalls the “Simplify” theorem prover
 Maps results back onto source codeMaps results back onto source code

Future plansFuture plans

 Out-of-band specificationOut-of-band specification
• Add specification for the .NET base class Add specification for the .NET base class

library library → → semi-automaticallysemi-automatically
 Provide Transformations:Provide Transformations:

• Contracts to natural languageContracts to natural language
• Spec# to C# compilerSpec# to C# compiler

Time for questionsTime for questions

