

Spec#Spec#

Andreas VidaAndreas Vida

MotivationMotivation

 Correct and maintainable softwareCorrect and maintainable software
 Cost effective software productionCost effective software production
 Implicit assumptions easily brokenImplicit assumptions easily broken

→ Need more f→ Need more formal specification ormal specification
 Integration into a Integration into a popularpopular language language

What has been done beforeWhat has been done before

 Pioneering languagesPioneering languages
• GipsyGipsy
• EuclidEuclid

 More recent developmentsMore recent developments
• EiffelEiffel
• SPARKSPARK
• JMLJML

Now: Spec#Now: Spec#

 Extension of C# (Microsoft Research) Extension of C# (Microsoft Research)
that provides:that provides:
• A sound programming methodologyA sound programming methodology
• Tools to enforce this methodologyTools to enforce this methodology
• Smooth adoption path for new-comersSmooth adoption path for new-comers

Components of Spec#Components of Spec#

 Boogie static-verifierBoogie static-verifier
 Spec# compilerSpec# compiler

• Emits run-time checksEmits run-time checks
 Integration into Visual StudioIntegration into Visual Studio

• IntelliSense code completionIntelliSense code completion
• Syntax HighlightingSyntax Highlighting

Spec# language features Spec# language features

 non-null typesnon-null types
 checked exceptionschecked exceptions
 class contracts (object invariants)class contracts (object invariants)
 method contractsmethod contracts

• pre- and (exceptional) postconditionspre- and (exceptional) postconditions
 frame conditionsframe conditions
 inheritance of specificationinheritance of specification

Non-null typesNon-null types
 Notation: T!Notation: T!
 Constructors need initialiser-fields for each non-Constructors need initialiser-fields for each non-

null fieldnull field
→ → evaluated before base-class-constructor call!evaluated before base-class-constructor call!

classclass Student: Person { Student: Person {
Transcript! t;Transcript! t;
publicpublic Student(string name, EnrollmentInfo! e): Student(string name, EnrollmentInfo! e):
t(t(newnew Transcript(e)), Transcript(e)), basebase(name)(name)
{ /*…*/}{ /*…*/}
//…//…

}}

Checked vs. unchecked Checked vs. unchecked
exceptionsexceptions

 C# only has unchecked exceptionsC# only has unchecked exceptions
 Spec# in this way similar to JavaSpec# in this way similar to Java
 Considers 2 types of exceptions:Considers 2 types of exceptions:

• Admissible failures Admissible failures
→→ interface: ICheckedException interface: ICheckedException

• Client failures, observed program errors Client failures, observed program errors
→ derived from: Exception→ derived from: Exception

Method contractsMethod contracts
 Preconditions example:Preconditions example:

classclass ArrayList { ArrayList {
publicpublic virtualvirtual voidvoid Insert(Insert(intint index, index, objectobject
value)value)
requiresrequires 0 <= index && index <= Count; 0 <= index && index <= Count;
requiresrequires !IsReadOnly && !IsFixedSize; !IsReadOnly && !IsFixedSize;
{ /* … */ }{ /* … */ }
//…//…

}}

PreconditionsPreconditions
 Enforced by run-time checks that throw a Enforced by run-time checks that throw a

RequiresViolationExceptionRequiresViolationException
 An alternative exception type can be specified An alternative exception type can be specified

using an using an otherwiseotherwise clause: clause:

 classclass A { A {
publicpublic voidvoid Foo(int a) Foo(int a)
requiresrequires a > 0 a > 0
otherwiseotherwise ArgumentOutOfRangeException; ArgumentOutOfRangeException;
{ /* … */ }{ /* … */ }

}}

PostconditionsPostconditions

 ArrayList.Insert’s postconditions:ArrayList.Insert’s postconditions:
ensuresensures Count == Count == oldold(Count) + 1;(Count) + 1;

ensuresensures value == value == thisthis[index];[index];

ensuresensures Forall{ Forall{ intint i i inin 0: index; 0: index; oldold((thisthis[i]) == [i]) == thisthis[i]};[i]};

ensuresensures Forall{ Forall{ intint i i inin index: index: oldold(Count); (Count); oldold(this[i]) == (this[i]) == thisthis[i+1]}[i+1]}

 Complex quantified expressions supportedComplex quantified expressions supported
 Boogie attempts to verify postconditionsBoogie attempts to verify postconditions
 Eiffel’s mechanism: Eiffel’s mechanism: oldold() are saved away () are saved away

at the method’s entranceat the method’s entrance

Exceptional postconditionsExceptional postconditions
 Methods have a throws-set (as in Java)Methods have a throws-set (as in Java)
 throws clause (only for checked exceptions) can throws clause (only for checked exceptions) can

be combined with postconditions:be combined with postconditions:

voidvoid ReadToken(ArrayList a) ReadToken(ArrayList a)
 throwsthrows EndOfFileException EndOfFileException
 ensuresensures a.Count == old(a.Count); a.Count == old(a.Count);
{ /*… */ }{ /*… */ }

 ““Foolproof”: if static checks can’t ensure that the Foolproof”: if static checks can’t ensure that the
exception is checked then run-time checks are exception is checked then run-time checks are
emitted emitted

Class contractsClass contracts
 Object invariants:Object invariants:

classclass AttendanceRecord { AttendanceRecord {
Student[]! students;Student[]! students;
boolbool[]! absent;[]! absent;
invariantinvariant students.Length == students.Length ==

absent.Length; absent.Length;
 /*…*/ /*…*/

}}
 Often need to be temporarily broken Often need to be temporarily broken

→ → do this explicitely:do this explicitely:
exposeexpose (variable) { … }; (variable) { … };

Frame conditionsFrame conditions
 Restrict which part of the program state Restrict which part of the program state

can be modified by a methodcan be modified by a method
classclass C { C {

intint x, y; x, y;
voidvoid M() M() modifiesmodifies x; x;
{ x++; }{ x++; }

}}
 How to change private parts of an outside How to change private parts of an outside

class? class? → w→ wildcards: ildcards:
modifiesmodifies this ^ ArrayList; this ^ ArrayList;

 Still a problem: aggregate objectsStill a problem: aggregate objects

Run-time checkingRun-time checking

 Pre- and postconditions are turned Pre- and postconditions are turned
into (tagged) inlined codeinto (tagged) inlined code

 Conditions violated at run-time Conditions violated at run-time
→ appropriate → appropriate contract exceptioncontract exception

 1 method is added to each class 1 method is added to each class
using invariantsusing invariants

 Object fields added:Object fields added:
• invariant levelinvariant level
• owner of an objectowner of an object

Boogie: Static verificationBoogie: Static verification

 Intermediate language Intermediate language →→ BoogiePL BoogiePL
 Inference systemInference system

• Obtains properties (loop invariants) then Obtains properties (loop invariants) then
adds assert/assume statementsadds assert/assume statements

 Creates acyclic control flow graph by Creates acyclic control flow graph by
introducing havoc statementsintroducing havoc statements

 Calls the “Simplify” theorem proverCalls the “Simplify” theorem prover
 Maps results back onto source codeMaps results back onto source code

Future plansFuture plans

 Out-of-band specificationOut-of-band specification
• Add specification for the .NET base class Add specification for the .NET base class

library library → → semi-automaticallysemi-automatically
 Provide Transformations:Provide Transformations:

• Contracts to natural languageContracts to natural language
• Spec# to C# compilerSpec# to C# compiler

Time for questionsTime for questions

