Spec#

Andreas Vida

Motivation

® Correct and maintainable software
= Cost effective software production

= |[mplicit assumptions easily broken
— Need more formal specification

" [ntegration into a popular language

What has been done before

® Pioneering languages
* Gipsy
* Euclid
" More recent developments
* Eiffel
* SPARK
e IML

Now: Spec+#

= Extension of C# (Microsoft Research)
that provides:
* A sound programming methodology
* Tools to enforce this methodology
* Smooth adoption path for new-comers

Components of Spec#

= Boogie static-verifier
" Spec# compiler
* Emits run-time checks
" |[ntegration into Visual Studio

* IntelliSense code completion
* Syntax Highlighting

Spec# language features

® non-null types
® checked exceptions
= class contracts (object invariants)

" method contracts
* pre- and (exceptional) postconditions

" frame conditions
® Inheritance of specification

Non-null types

= Notation: T!

" Constructors need initialiser-fields for each non-
null field
— evaluated before base-class-constructor call!

class Student: Person {
Transcript! t;

public Student(string name, Enrolimentinfo! e):
t(new Transcript(e)), base(name)

{ /*.. %/}
/...
}

Checked vs. unchecked
exceptions

" C# only has unchecked exceptions
® Spec# In this way similar to Java

® Considers 2 types of exceptions:

* Admissible failures
— Interface: ICheckedException

* Client failures, observed program errors
— derived from: Exception

Method contracts
" Preconditions example:

class ArrayList {

public virtual void Insert(int iIndex, object
value)

requires 0 <= index && index <= Count;
requires !IsReadOnly && !IsFixedSize;
{/*... %}
/l...

}

Preconditions

"= Enforced by run-time checks that throw a
RequiresViolationException

= An alternative exception type can be specified
using an otherwise clause:

class A {
public void Foo(int a)
requires a > 0
otherwise ArgumentOutOfRangeException;

1/)

Postconditions

" ArraylList.Insert’s postconditions:

ensures Count == old(Count) + 1;

ensures value == this[index];

ensures Forall{ int i in 0: index; old(this[i]) == this[i]};

ensures Forall{ int 1 in index: old(Count); old(this[i]) == this[i+1]}

= Complex quantified expressions supported
= Boogie attempts to verify postconditions

" Eiffel’s mechanism: old() are saved away
at the method’s entrance

Exceptional postconditions

= Methods have a throws-set (as in Java)

" throws clause (only for checked exceptions) can
be combined with postconditions:

void ReadToken(ArrayList a)

throws EndOfFileException
ensures a.Count == old(a.Count);

" “Foolproof”: if static checks can’t ensure that the
exception is checked then run-time checks are

emitted

Class contracts

® Object invariants:
class AttendanceRecord {
Student][]! students;
pbool[]! absent;

Invariant students.Length =
absent.Length;

il St
¥

= Often need to be temporarlly broken
— do this explicitel
expose (variable) {y };

Frame conditions

Restrict which part of the program state
can be modified by a method

class C {
Int X, y;
volid M() modifies X;
{ xX++; }

}

How to change private parts of an outside
class? —» wildcards:
modifies this © ArrayList;

Still a problem: aggregate objects

Run-time checking

" Pre- and postconditions are turned
Into (tagged) inlined code

® Conditions violated at run-time
— appropriate contract exception

= T method is added to each class
using invariants

" Object fields added:

* invariant level
* owner of an object

Boogie: Static verification

" [ntermediate language — BoogiePL

" [nference system

* Obtains properties (loop invariants) then
adds assert/assume statements

® Creates acyclic control flow graph by
Introducing havoc statements

" Calls the “Simplify” theorem prover
= Maps results back onto source code

Future plans

= Qut-of-band specification

* Add specification for the .NET base class
library —» semi-automatically

" Provide Transformations:
* Contracts to natural language
* Spec# to C# compiler

Time for questions

