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What Is Functional Programming?
From a lazy perspective

As in features of the programming language Haskell
[JH99].

I Functions are first class - values that can be passed
around

I Referential integrity - no side effects!
I Pattern matching - Write functions according to the

type’s data constructor
I Laziness - evaluate terms when they are needed

(and only once)
I Statically typed - all terms must have a valid type at

compile time
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Functions As Essential Building Blocks
Functions are curried

multiply :: Integer → Integer → Integer
multiply x y = x ∗ y

Functions build of other functions

multiplyByTwo :: Integer → Integer
multiplyByTwo x = multiply 2 x

Functions can be polymorphic

id :: a → a
id x = x

applyTwice :: (a → a) → a → a
applyTwice f x = f (f x)

file:///Users/arnold/Desktop/qc-ex/01-func.hs

file:///Users/arnold/Desktop/qc-ex/01-func.hs
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A Repeating Pattern

Functions are defined using pattern matching on the
argument type(s).

data List a = Empty | Prepend a (List a)
List a ≡ [a]
Empty ≡ [ ]
Prepend x xs ≡ x : xs

[1, 2, 3, 4] ≡ 1 : (2 : (3 : (4 : [ ])))

len :: [a] → Integer
len [ ] = 0
len (x : xs) = 1 + len xs

file:///Users/arnold/Desktop/qc-ex/02-pattern.hs

file:///Users/arnold/Desktop/qc-ex/02-pattern.hs
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The Beauty Of Being Lazy
Functions are lazy. Only evaluate when result is needed.

allNumbersFrom :: Integer → [Integer ]
allNumbersFrom x = x : allNumbersFrom (x + 1)

first :: [Integer ] → Integer
first [ ] = [ ]
first (x : xs) = x

take :: Integer → [a] → [a]
take 0 = [ ]
take [ ] = [ ]
take n (x : xs) = x : (take (n − 1) xs)

first (allNumbersFrom 1) ≡ 1
take 5 (allNumbersFrom 1) ≡ [1, 2, 3, 4, 5]

file:///Users/arnold/Desktop/qc-ex/03-lazy.hs

file:///Users/arnold/Desktop/qc-ex/03-lazy.hs
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Advantages Of Functional Programming

I Modular programming - higher order functions,
producer consumer pattern due to laziness [Hug89]

I Conciseness - less to write, less to read
I Easier to debug - because functions are pure
I Easier to test - because functions are pure
I Safer - Type checking finds a lot of errors before

even running the program [Car97]
I Typed Lambda Calculus [Chu36]- mathematical

theory more beautiful than Turing Machine (to me at
least)
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QuickCheck [CH00] What Is It About?

I Traditionally test cases are written by hand (Unit
testing)

I Tedious work - remember we are in a lazy setting
I Idea: Functional setting, dependency only on

arguments
I Specify properties of a function (e.g f (x) > 0 for all x)
I Randomly generate arguments and check that

property holds
I We can do this even for arguments that are functions

(remember Haskell is cool)
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Property Based Testing

Test case 
generator

Function
under test

Property

OK? [Cla06]
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Simple Tests
Random test generators for most build-in types (Integers,
Boolean, Tuples, Lists) are predefined.

prop_RevUnit :: Integer → Bool
prop_RevUnit x =

reverse [x ] ≡ [x ]

prop_RevRev :: [Integer ] → Bool
prop_RevRev xs =

reverse (reverse xs) ≡ xs

prop_RevApp :: [Integer ] → [Integer ] → Bool
prop_RevApp xs ys =

reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

file:///Users/arnold/Desktop/qc-ex/04-qcsimple.hs

file:///Users/arnold/Desktop/qc-ex/04-qcsimple.hs
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We Don’t Stop At Functions ’Cause
Remember We Are Cool

Extensionality on functions.

(f === g) x = f x ≡ g x

To show function composition is associative.

prop_CompositionAssociative :: (Int → Int) →
(Int → Int) →
(Int → Int) →
Int → Bool

prop_CompositionAssociative f g h =
f ◦ (g ◦ h) === (f ◦ g) ◦ h

file:///Users/arnold/Desktop/qc-ex/05-qcfunc.hs

file:///Users/arnold/Desktop/qc-ex/05-qcfunc.hs
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Observing What Is Going On
There are combinators that can be used in specifications
that tell us what is going on.

prop_Insert :: Int → [Int ] → Property
prop_Insert x xs =

ordered xs ==>
collect (length xs) \$

ordered (insert x xs)

OK, passed 100 tests.
20% 0.
10% 1.
9% 3.
...
1% 16.

file:///Users/arnold/Desktop/qc-ex/06-monitor.hs

file:///Users/arnold/Desktop/qc-ex/06-monitor.hs
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Generating Random Data

QuickCheck provides support for user defined random
data generators.

I User defined types (structures)
I Control the size of the generated data
I Control the distribution of generated data
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Do We Really Want To test This Way?

I Yes, because less work then writing unit tests.
I Find errors in functions, also in corner cases which

unit test might have forgotten
I Properties serve as documentation
I Find errors in specification
I Don’t need to learn another language for

specification, expressed in Haskell
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Is It Really Used In Practice?

I Ships with all major Haskell compilers (Hugs,GHC,
NHC)

I Used in many Haskell libraries and applications (e.g.
Edison - a functional data structures library, xmonad
- a functional window manager)

I Commercial version for Erlang (concurrent functional
language) - called Quviq QuickCheck

I Quviq QuickCheck will be use in new product
development at Erricson (Telecommunication
products) [AHJW06]

I Versions for Erlang, Scheme, Python, ML, Lisp,
ocaml
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What Is Everybody Else Doing ?

I HUnit - a unit testing framework based on JUnit, no
automatic generation of test cases [Her02]

I JML - Java Modelling Language [LBR99] allows
specification, verification using tools like KeY
[BHS07], ESC/Java2 [CK04]

I Extend Static Checking for Haskell, implementation
of Pre/Postcondition reasoning (Hoare calculus) for
Haskell verified using symbolic evaluation [Xu06]

The authors of QuickCheck are looking into ways to
integrate QuickCheck with Hat. Hat is a tracing tool.
When a test fails the tracer would be entered and the
programmer could look at the computation. [CH02]
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What to remember?

I Functional programs are easier to test/debug - no
global state

I Functional programs are concise and modular
I Functional programming is cool. If only to learn new

kinds of abstractions (Sapir-Whorf hypothesis)
I Property based random testing is good to test

functions with minimal effort
I But also serves as documentation
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Thank you!
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Defining Your Own data Generator
Must implement instance of type class Arbitrary.

class Arbitrary awhere
arbitrary :: Gen a

Using e.g oneof.

data Color = Red | Green | Blue
instance Arbitrary Color where

arbitrary = oneof
[return Red , return Green, return Blue ]

Or controlling the frequency of choice.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

instance Arbitrary a ⇒ Arbitrary [a] where
arbitrary = frequency
[(1, liftM Leaf arbitrary),

(2, liftM2 Branch arbitrary arbitrary)]
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I Wan To learn More About Haskell And
Functional Programming!

I For the lazy http://video.s-inf.de/. Look for
“Grundlagen der Funktionalen Programmierung”.

I Or find other resources on http://www.Haskell.org

I More info concerning type systems in Types and
Programming Languages [Pie02]

I An eye opener: Structur and Interpretation of
Computer Programs [ASS96]

http://video.s-inf.de/
http://www.Haskell.org
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