
QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

QuickCheck - Random Property-based
Testing

Why Functional Programming And In Particular
QuickCheck Is Cool

Arnold Schwaighofer

Institute for Formal Models and Verification
Johannes Kepler University Linz

26 June 2007 / KV Debugging

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Outline

Haskell - A Truly (Cool) Functional Programming
Language

What - Functional Programming
How - Functional Programming
Why - Functional Programming

Quickcheck - A Truly Cool Property Based Testing Tool
What - Random Property Based Testing
How - Random Property Based Testing
Why - Random Property Based Testing
Success Stories
Related Work And Outlook

Summary

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Outline

Haskell - A Truly (Cool) Functional Programming
Language

What - Functional Programming
How - Functional Programming
Why - Functional Programming

Quickcheck - A Truly Cool Property Based Testing Tool
What - Random Property Based Testing
How - Random Property Based Testing
Why - Random Property Based Testing
Success Stories
Related Work And Outlook

Summary

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Outline

Haskell - A Truly (Cool) Functional Programming
Language

What - Functional Programming
How - Functional Programming
Why - Functional Programming

Quickcheck - A Truly Cool Property Based Testing Tool
What - Random Property Based Testing
How - Random Property Based Testing
Why - Random Property Based Testing
Success Stories
Related Work And Outlook

Summary

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language
What - Functional
Programming

How - Functional
Programming

Why - Functional
Programming

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

What Is Functional Programming?
From a lazy perspective

As in features of the programming language Haskell
[JH99].

I Functions are first class - values that can be passed
around

I Referential integrity - no side effects!
I Pattern matching - Write functions according to the

type’s data constructor
I Laziness - evaluate terms when they are needed

(and only once)
I Statically typed - all terms must have a valid type at

compile time

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language
What - Functional
Programming

How - Functional
Programming

Why - Functional
Programming

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Functions As Essential Building Blocks
Functions are curried

multiply :: Integer → Integer → Integer
multiply x y = x ∗ y

Functions build of other functions

multiplyByTwo :: Integer → Integer
multiplyByTwo x = multiply 2 x

Functions can be polymorphic

id :: a → a
id x = x

applyTwice :: (a → a) → a → a
applyTwice f x = f (f x)

file:///Users/arnold/Desktop/qc-ex/01-func.hs

file:///Users/arnold/Desktop/qc-ex/01-func.hs

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language
What - Functional
Programming

How - Functional
Programming

Why - Functional
Programming

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

A Repeating Pattern

Functions are defined using pattern matching on the
argument type(s).

data List a = Empty | Prepend a (List a)
List a ≡ [a]
Empty ≡ []
Prepend x xs ≡ x : xs

[1, 2, 3, 4] ≡ 1 : (2 : (3 : (4 : [])))

len :: [a] → Integer
len [] = 0
len (x : xs) = 1 + len xs

file:///Users/arnold/Desktop/qc-ex/02-pattern.hs

file:///Users/arnold/Desktop/qc-ex/02-pattern.hs

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language
What - Functional
Programming

How - Functional
Programming

Why - Functional
Programming

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

The Beauty Of Being Lazy
Functions are lazy. Only evaluate when result is needed.

allNumbersFrom :: Integer → [Integer]
allNumbersFrom x = x : allNumbersFrom (x + 1)

first :: [Integer] → Integer
first [] = []
first (x : xs) = x

take :: Integer → [a] → [a]
take 0 = []
take [] = []
take n (x : xs) = x : (take (n − 1) xs)

first (allNumbersFrom 1) ≡ 1
take 5 (allNumbersFrom 1) ≡ [1, 2, 3, 4, 5]

file:///Users/arnold/Desktop/qc-ex/03-lazy.hs

file:///Users/arnold/Desktop/qc-ex/03-lazy.hs

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language
What - Functional
Programming

How - Functional
Programming

Why - Functional
Programming

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Advantages Of Functional Programming

I Modular programming - higher order functions,
producer consumer pattern due to laziness [Hug89]

I Conciseness - less to write, less to read
I Easier to debug - because functions are pure
I Easier to test - because functions are pure
I Safer - Type checking finds a lot of errors before

even running the program [Car97]
I Typed Lambda Calculus [Chu36]- mathematical

theory more beautiful than Turing Machine (to me at
least)

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

QuickCheck [CH00] What Is It About?

I Traditionally test cases are written by hand (Unit
testing)

I Tedious work - remember we are in a lazy setting
I Idea: Functional setting, dependency only on

arguments
I Specify properties of a function (e.g f (x) > 0 for all x)
I Randomly generate arguments and check that

property holds
I We can do this even for arguments that are functions

(remember Haskell is cool)

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

Property Based Testing

Test case
generator

Function
under test

Property

OK? [Cla06]

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

Simple Tests
Random test generators for most build-in types (Integers,
Boolean, Tuples, Lists) are predefined.

prop_RevUnit :: Integer → Bool
prop_RevUnit x =

reverse [x] ≡ [x]

prop_RevRev :: [Integer] → Bool
prop_RevRev xs =

reverse (reverse xs) ≡ xs

prop_RevApp :: [Integer] → [Integer] → Bool
prop_RevApp xs ys =

reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

file:///Users/arnold/Desktop/qc-ex/04-qcsimple.hs

file:///Users/arnold/Desktop/qc-ex/04-qcsimple.hs

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

We Don’t Stop At Functions ’Cause
Remember We Are Cool

Extensionality on functions.

(f === g) x = f x ≡ g x

To show function composition is associative.

prop_CompositionAssociative :: (Int → Int) →
(Int → Int) →
(Int → Int) →
Int → Bool

prop_CompositionAssociative f g h =
f ◦ (g ◦ h) === (f ◦ g) ◦ h

file:///Users/arnold/Desktop/qc-ex/05-qcfunc.hs

file:///Users/arnold/Desktop/qc-ex/05-qcfunc.hs

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

Observing What Is Going On
There are combinators that can be used in specifications
that tell us what is going on.

prop_Insert :: Int → [Int] → Property
prop_Insert x xs =

ordered xs ==>
collect (length xs) \$

ordered (insert x xs)

OK, passed 100 tests.
20% 0.
10% 1.
9% 3.
...
1% 16.

file:///Users/arnold/Desktop/qc-ex/06-monitor.hs

file:///Users/arnold/Desktop/qc-ex/06-monitor.hs

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

Generating Random Data

QuickCheck provides support for user defined random
data generators.

I User defined types (structures)
I Control the size of the generated data
I Control the distribution of generated data

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

Do We Really Want To test This Way?

I Yes, because less work then writing unit tests.
I Find errors in functions, also in corner cases which

unit test might have forgotten
I Properties serve as documentation
I Find errors in specification
I Don’t need to learn another language for

specification, expressed in Haskell

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

Is It Really Used In Practice?

I Ships with all major Haskell compilers (Hugs,GHC,
NHC)

I Used in many Haskell libraries and applications (e.g.
Edison - a functional data structures library, xmonad
- a functional window manager)

I Commercial version for Erlang (concurrent functional
language) - called Quviq QuickCheck

I Quviq QuickCheck will be use in new product
development at Erricson (Telecommunication
products) [AHJW06]

I Versions for Erlang, Scheme, Python, ML, Lisp,
ocaml

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool
What - Random Property
Based Testing

How - Random Property
Based Testing

Why - Random Property
Based Testing

Success Stories

Related Work And Outlook

Summary

Custom Random
Data Generators

Resources

References

What Is Everybody Else Doing ?

I HUnit - a unit testing framework based on JUnit, no
automatic generation of test cases [Her02]

I JML - Java Modelling Language [LBR99] allows
specification, verification using tools like KeY
[BHS07], ESC/Java2 [CK04]

I Extend Static Checking for Haskell, implementation
of Pre/Postcondition reasoning (Hoare calculus) for
Haskell verified using symbolic evaluation [Xu06]

The authors of QuickCheck are looking into ways to
integrate QuickCheck with Hat. Hat is a tracing tool.
When a test fails the tracer would be entered and the
programmer could look at the computation. [CH02]

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

What to remember?

I Functional programs are easier to test/debug - no
global state

I Functional programs are concise and modular
I Functional programming is cool. If only to learn new

kinds of abstractions (Sapir-Whorf hypothesis)
I Property based random testing is good to test

functions with minimal effort
I But also serves as documentation

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Thank you!

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Defining Your Own data Generator
Must implement instance of type class Arbitrary.

class Arbitrary awhere
arbitrary :: Gen a

Using e.g oneof.

data Color = Red | Green | Blue
instance Arbitrary Color where

arbitrary = oneof
[return Red , return Green, return Blue]

Or controlling the frequency of choice.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

instance Arbitrary a ⇒ Arbitrary [a] where
arbitrary = frequency
[(1, liftM Leaf arbitrary),

(2, liftM2 Branch arbitrary arbitrary)]

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

I Wan To learn More About Haskell And
Functional Programming!

I For the lazy http://video.s-inf.de/. Look for
“Grundlagen der Funktionalen Programmierung”.

I Or find other resources on http://www.Haskell.org

I More info concerning type systems in Types and
Programming Languages [Pie02]

I An eye opener: Structur and Interpretation of
Computer Programs [ASS96]

http://video.s-inf.de/
http://www.Haskell.org

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger.
Testing telecoms software with quviq quickcheck.
In Phil Trinder, editor, Proceedings of the Fifth ACM SIGPLAN
Erlang Workshop. ACM Press, 2006.

Harold Abelson, Gerald Jay Sussman, and Julie Sussman.
Structure and Interpretation of Computer Programs.
McGraw Hill, Cambridge, Mass., second edition, 1996.
Available online:
http://mitpress.mit.edu/sicp/full-text/book/book.html.

Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer-Verlag, 2007.

Luca Cardelli.
Type systems.
In Allen B. Tucker, editor, The Handbook of Computer Science
and Engineering, chapter 103, pages 2208–2236. CRC Press,
Boca Raton, FL, 1997.
URL: http://citeseer.ist.psu.edu/cardelli97type.html.

Koen Claessen and John Hughes.

http://mitpress.mit.edu/sicp/full-text/book/book.html
http://citeseer.ist.psu.edu/cardelli97type.html

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

Quickcheck: a lightweight tool for random testing of haskell
programs.
ACM SIGPLAN Notices, 35(9):268–279, 2000.

K. Claessen and J. Hughes.
Testing monadic code with quickcheck.
In Proceedings of the ACM SIGPLAN 2002., 2002.

Alonzo Church.
An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58:345–363, 1936.

David R. Cok and Joseph R. Kiniry.
Esc/java2: Uniting esc/java and jml - progress and issues in
building and using esc/java2, 2004.

Koen Claessen.
Quickcheck: Property-based random testing.
Advanced Functional Programming, Chalmers University of
Technology, Goethenburg, Sweden, August 2006.

Dean Herington.
Hunit 1.0, 2002.
Retrieved on 25 June 2007, URL:
http://hunit.sourceforge.net/HUnit-1.0/Guide.html.

http://hunit.sourceforge.net/HUnit-1.0/Guide.html

QuickCheck -
Random

Property-based
Testing

Arnold
Schwaighofer

Haskell - A Truly
(Cool) Functional
Programming
Language

Quickcheck - A
Truly Cool
Property Based
Testing Tool

Summary

Custom Random
Data Generators

Resources

References

John Hughes.
Why Functional Programming Matters.
Computer Journal, 32(2):98–107, 1989.

Simon Peyton Jones and John Huges.
Haskell 98 report, February 1999.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors,
Behavioral Specifications of Businesses and Systems, pages
175–188. Kluwer Academic Publishers, 1999.

Benjamin Pierce.
Types and Programming Languages, chapter 1.1, page 1.
The MIT Press, 2002.
URL: http://www.cis.upenn.edu/ bcpierce/tapl/index.html.

Dana N. Xu.
Extended static checking for haskell.
In Haskell ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Haskell, pages 48–59, New York, NY, USA, 2006.
ACM Press.

http://www.cis.upenn.edu/~bcpierce/tapl/index.html

	Haskell - A Truly (Cool) Functional Programming Language
	What - Functional Programming
	How - Functional Programming
	Why - Functional Programming

	Quickcheck - A Truly Cool Property Based Testing Tool
	What - Random Property Based Testing
	How - Random Property Based Testing
	Why - Random Property Based Testing
	Success Stories
	Related Work And Outlook

	Summary
	Custom Random Data Generators
	Resources
	References

