

Eiffel – Design by Contract

Jakob Zwirchmayr, 26. June 2007

Presentation based on Eiffel Training Videos by Hal Weber and the
book 'Eiffel the Language' by Bertrand Meyer

(Design by Contract – part 1 and 2, http://www.eiffel.com/developers/presentations/)

http://www.eiffel.com/developers/presentations/

Eiffel

- Eiffel: Eiffel Development Framework (tm), focus: SW quality

- EDF consists of:
- Eiffel development methodology

(OO, CQS, DBC (tm), etc.)
- Eiffel programming language & compiler

(expression of analysis, design and implementation)
- Eiffel development environments

(EiffelStudio (tm), EiffelNVision (tm))

- Eiffel is a reuse centric method (reliable components crucial)

SW specification & metrics

- Specification: English, formal system based on mathematics

- reliability relative to specification:
- correctness: SW does what it's supposed to do (spec)
- robustness: behaves in acceptable fashion outside spec

- Design by Contract:
- compile spec to run against, catch 'bugs' earlier

Design by Contract (invented by Eiffel): “A method of SW construction that designs
the components of a system so that they will cooperate on the basis of
precisely defined contracts based on a model of software correctness.”

An Eiffel Class

class ROOT_CLASS
-- ROOT_CLASS ~ main

create
make

-- creation procedure

feature -- Initialization

make is
-- Hello World, every program needs a ROOT_CLASS

do
io.put_string("Hello World")

end

end -- class ROOT_CLASS

Classes

- Class: consists of features, instances of class ~ object

- Feature:
- attribute
- routine

- Command-Query-Separation:
- query: “answering question” about instances
 (attributes and functions)
- commands: computations that alter state of an instance

 (procedures)

- Uniform Access: memory or computational?

Routines

- procedure that updates the hour attribute in class
 TIME_OF_DAY (implementation: hour, min, sec:INTEGER)

set_hour (h: INTEGER) is
-- Set the hour from 'h'

require
valid_h: 0 <= h and h <= 23

do
hour := h

ensure
hour_set: hour = h
minute_unchanged: minute = old minute
second_unchanged: second = old second

end

Precondition

Postcondition

Pre- and Postconditions

- DbC correctness for routines:
- preconditions: true -> routine can work correctly
- postconditions: true after execution, if routine worked

 correctly

- a routine is correct if pre- and postconditions are met

- reason for CQS:
- only procedures change state of an object
- reason about correctness of instance state using queries

Routines – Contract View

- Contract View: unaffected by implementation

- Contract View for routine supplying service:

set_hour (h: INTEGER) is
-- Set the hour from 'h'

require
valid_h: 0 <= h and h <= 23

ensure
hour_set: hour = h
minute_unchanged: minute = old minute
second_unchanged: second = old second

end

Design by Contract

“Design by Contract views the construction of a Software
system as the fulfillment of many small and large

contracts.”

Contract for a routine

set_hour OBLIGATIONS BENEFITS

CLIENT sat pre from post
make sure h not too hour updated
large nor too small

SUPPLIER sat post from prec
must set 'hour' to may assume 'h' valid
value passed in 'h'

- contracts violated:
by either party, not meeting obligations

- violated contract: SW is outside specification = DEFECT

Contract for a routine

- rules of execution: routine completes in (only) 1 of 2 ways:
1) fulfills its contract
2) routine fails to fulfill its contract

- cause an exception

- routine suffering an exception reacts in (only) 1 of 2 ways:
1) ensure object is in a valid, stable state (Retry)
2) fail itself

- exception passed on to caller

Contracts = “built-in reliability“

Assertions

- Assertions in Eiffel: elements of formal specification
 expressing correctness conditions

- use of assertions:

- pre- and postconditions of a routine
- invariant clause of a class
- check instruction
- invariant of a loop instruction (also variants of a loop)

value of an assertion: true if every clause has value true, false if
a clause has value false

Assertions on routines

- pre and post: precondition and postcondition of routine rout

- old expression: postconditions of routines only
- old exp has same type as exp
- old exp value on rout exit = exp on rout entry

- strip expression: part of an object that will not change

- “do not change fields except”:
 equal (strip(a, b, ..), old strip(a, b, ..))

Check instructions

- check whether a certain consistency condition is fulfilled.

- check instruction: a list of assertions packaged together

- check-correct:

“routine r is check-correct, if for every check instruction c in
r, any execution of c (as part of an execution of r) satisfies all
its assertions”

Class Invariants

- properties that must hold for any instance of a class

- valid at all critical times (= when observable by clients)

- observable: before and after each exported (= public) routine

- Class Invariant: assertion obtained by concatenating assertions
 - invariant of all parents
 - postconditions of any inherited function
 - assertion in classes' own invariant clause

Class Invariants

- Class invariant guarantees:
as soon as instance invalid, an exception occurs

- Class C consistent if it satisfies the following conditions:
1) for every creation procedure p of C:

{pre_p} do_p {INV_C}
2) for every routine r of C:

{pre_r AND INV_C} do_r {post_r AND INV_C}

P, Q = assertions,
A = instruction or compound instruction

{P} A {Q} expresses the property that whenever A is executed in state in
which P is true, the execution will terminate in a state where Q is true.

Loop Invariants

- invariant assertion:
- initialization ensures truth of INV
- execution of loop body, in a state not satisfying exit

 condition, preserves the truth of INV
=> invariant and exit condition satisfied on loop exit

- loop variant (integer expression): guarantees termination
- initialization: non-negative value

from .. invariant .. variant .. until .. loop .. end

Loop Correctness

routine is loop-correct if every loop it contains satisfies

- {true} INIT {INV}
- {true} INIT {VAR >= 0}
- {INV and then not EXIT} BODY {INV}
- {INV and then not EXIT and then (VAR = v)}

BODY
 {0 <= VAR < v}

INV = loop's invariant, VAR = loop's variant, INIT = initialization,
EXIT = exit condition, BODY = loop body.

- a routine is exception-correct if it:
- executed Retry and ensures precondition and the invariant
- executed no Retry and ensures the invariant.

Correctness of a Class

- Correctness of a class C: combination of correctness properties
- it is consistent (creation => INV_c, pre_c+INV => INV
- every routine of C is

- check-correct
- loop-correct
- exception-correct

- Ideally: tools that prove or disprove correctness of a class
 -> currently beyond reach

- but: environment supports run-time monitoring of assertions.

Run-time monitoring of Assertions

- Eiffel: various evaluation levels for assertions of Class C

- no: no assertion checking of any kind
- require: evaluate preconditions whenever execution of a routine of C begins

 (default)
- ensure: also evaluate postconditions on return of routines
- invariant: also evaluate class invariant on entry to and return from qualified

 calls to routines of C
- loop: also evaluate the Variant and Invariant of every loop in C; after every

 iteration check that the variant has decreased while remaining
 non-negative;

- check or all: also evaluate every check instruction, whenever reached.

Conclusion

- What Systems is Eiffel used in:
- financial security, embedded systems
- market pricing systems, manufacturing systems

- Eiffel about itself: “no magic but solid well-thought out technology, based
on a few powerful ideas from computer science and software engineering”

- Performance: using C compiler optimization speeds up
 performance

- I found my bug in no time!

