
Isolating Failure-Inducing Thread Schedules

by Jong-Deok Choi - IBM T.J. Watson Research Center
and Andreas Zeller - Saarland University

Marlene Hochrieser
FMV - Institute for Formal Models and Verification

Introduction to the problem

Consider a multi threaded application is running on the same input several times
and fails occasionally.

- How do I reproduce a failure?
Thread switches are non-deterministic.

- How do I isolate the error?
Thread schedules may be composed of thousands of thread switches

- How do I find failing runs?
Is it possible to test different thread switch sequences with the same input?

Introduction to the solution

- Record a test run

- Deterministic replay

- Generate test cases

- Isolate failure causes by using delta debugging

- Relate causes to errors

Contents

- Code Example

- Jalapeño - DejaVu

- Capturing and Playbacking

- Isolating failure with Delta Debugging

- Generating altered schedules

- Case study - Ray tracer

- Related work

- Conclusion and future work

- Literature

Code example

Three test runs with same input - Passing / Failing

Three test runs with same input - Passing

Jalapeño - DejaVu

Jalapeño - Research VM for Java servers, developed at the IBM T.J. Watson Re-
search Center.

- Designed for scalability (SMP), high performance, sophisticated thread support,
availability, rapid response,..

- Papers are available at http://jikesrvm.org/ (redirected from IBM’s research page)

- Overview of Jalapeño: see [1]

DejaVu - Deterministic Java Utility is a tool to capture, alter, and replay Thread
schedules.

- Running as part of Jalapeño VM

- Making failures reproducible by capturing a non-deterministic run and replaying it
deterministically.

Jalapeño and Scheduling

Using implementation of the garbage collector to do scheduling.

Quasi-preemptive scheduling

Safe point - is a program location where the compiler that created the method
body is able to describe where all the live references exit.

Yield point - is a safe point located at a method prologue (such as function in-
vocation or at a loop back-edge).

Thread switching takes place only when a running thread has reached a yield point.

Capturing and playbacking

- Dejavu is using the yield points as global clock values

- During recording Dejavu stores global clock values of thread switches

- During playback a thread switch is forced at every yield point

- Different sequences of global clock values can be generated

- Dejavu will use them to force a thread switch

- Can be used for test generation

Capturing thread schedule - another approach [2]

- Thread schedule is a sequence of time intervals (time slices), containing thread
schedule information

- Logical thread schedules: Generate equivalence classes for different order of ac-
cess to shared variable

- Use logical thread schedule information with physical thread schedule

Isolating failure with Delta Debugging

A thread schedule is defined as a list of n clock times: t1, ...tn

Padded form of example results:

< 6,12,17,17,17 > - passing thread schedule in the padded form
< 5,7,8,10,15 > - failure-inducing thread schedule
< 5,7,8,13,17 > - passing thread schedule

stest is defined to return:
if the queue holds the value 95
if the queue is empty
otherwise

Difference decomposition

- Difference of two schedules T and T are defined as
δ : τ → τ with δ(T) = (T)

- Set of all differences:
C = τ τ

- Decompose δ in number of thread switch changes δi

- A schedule difference δ between two schedules
T =< t 1,t n > and T =< t 1,t n > is defined as δ = δ1 ◦ δ2◦ ... ◦δn where each
δi: τ → τ maps t i to t i; that is δi(T) =< t1 ,, ti−1 , t i, t i+1,t i+n >
◦ : CxC → C is defined as (δ ◦ δ)(T) = δi(δj(T))

Atomic decomposition

δi = δi,1 ◦ δi,2 ◦ ◦ δi,|t i−t i| where each δi,j is defined as δi,j(T) = δi,j(< t 1, t 2, ..., t n >) =
=< t 1, t 2, ..., t i−1, t

′
i, t i+1, ...t n >

where t ′
i is the value altered by δi,j; that is

→ t i + 1 if t i < t i

→ t i − 1 if t i > t i

Generating altered schedules with fuzzy approach

- Failing test run → passing test run
- Passing test run → failing test run

- Start from existing schedule
- Generate similar test cases to optimize determining differences
- Use simple Gaussian distribution centered around t:

From given schedule T =< t1, t2,, tn > generate T =< f(t1), f(t2),, f(tn) >, where
f(t) is a perturbation function. - Widen distribution until an altered schedule is found

Case study - Ray tracer

- Each ray-tracing thread calls LoadScene → race condition → no update for Sce-
nesLoaded
- Record of failing schedule T contained 3770 thread switches
- Using fuzzy approach it took 66 test to generate a passing schedule
- More than a million yield points → 3,842,577,240 atomic deltas have been applied
- Outcome: Amount of time was larger for T

- Error isolated at yield point 59,772,127 → back tracing for a given set of yield
points has been implemented

Related work

Article about Debugging concurrent processes, presented by [5]:

- Alter thread schedules manually

- Main idea of the paper Isolating Failure-Inducing Thread Schedules, but solution
for automated testing.

Testing alternate schedules by [4]:

- Idea is to manipulate in order to get different schedules

- Using sleep or priorities

- Focus on coverage rather than on isolating failure causes

Conclusion and future work

- Method that automatically isolates the failure-inducing difference(s) between a pass-
ing and a failing schedule

- Purely experimental / analysis of the program in question is not required

- Use capturing, replaying, and isolating thread schedule as integrated part of testing
and debugging of concurrent applications

- Use delta debugging

- Focus on cause-effect chains and other circumstances

- Integration of static analysis, dynamic analysis, and automated experiments

- More case studies

Literature

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M.
F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, , and J. Whaley. The jalapeno virtual machine.
IBM Systems Journal, Vol 39, No 1, 2000.

[2] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of java multithreaded
applications. In SPDT 98: Proceedings of the SIGMETRICS symposium on Parallel
and distributed tools, pages 4859, New York, NY, USA, 1998. ACM Press.

[3] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread schedules.
In ISSTA 02: Proceedings of the 2002 ACM SIGSOFT international symposium on
Software testing and analysis, pages 210220, New York, NY, USA, 2002. ACM Press.

[4] Y. Nir G.Ratsaby O. Edelstein, E. Farchi and S. Ur. Multithreaded java pro-
gram test generation. IBM Systems Journal, 41(1):111-125, Februar 2002.

[5] J. M. Stone. Debugging concurrent processes: A case study., June 1988.

