Isolating Failure-Inducing Thread Schedules

by Jong-Deok Choi - IBM T.J. Watson Research Center
and Andreas Zeller - Saarland University

Marlene Hochrieser
FMV - Institute for Formal Models and Verification

Introduction to the problem
Consider a multi threaded application is running on the same input several times
and fails occasionally.

- How do I reproduce a failure?
Thread switches are non-deterministic.

- How do I isolate the error?
Thread schedules may be composed of thousands of thread switches

- How do I find failing runs?
Is it possible to test different thread switch sequences with the same input?

Introduction to the solution

Record a test run

Deterministic replay

Generate test cases

Isolate failure causes by using delta debugging

Relate causes to errors

Contents

Code Example

Jalapeno - DejaVu

Capturing and Playbacking

Isolating failure with Delta Debugging

Generating altered schedules

Case study - Ray tracer

Related work

Conclusion and future work

Literature

Code example

24 // Engueue ELEM.

25 public void enqueue (int elem) |
26 link[elem] = 0;

27

23 if (head == 0}

29 head = elem;

0 elge {

synchronized (this) |
link[tail] = elem;
!

Fa e

L

Lo L L L L Lo L L Ld L
e

}
23
6 tail = elem;
7 }
1 eclass IntQueue | 8 . R i
2 /{ The gueue holds integers in the range s 1/ R‘Teturn first element of queue.
3 J/ of [1..numberOfElements - 1] 40 //bi? e}frirdchecklr:]g.
4 sgtatic final int numberOfElements = 100; ji Py iitlr;lemefu;::a- {
6 J/ 1ink[N] is N's successor in the gueus ji if tiiir{l ;_OFall)
7 int link[] = new int [numberOfElements] ; 4 '
B - 46 gsynchronized (this) |
9 int head; ,f_,f_ First element of gueue 47 head = link[he=ad] ;
10 int tail; // Last element of guesue 48 }
11 49
12 // Constructor 50 return elem;
13 IntQueue () { 51 }
14 head = 0; 52
15 tail = 0; 53 // Print elements of gueue
16 for (int i = 0; i < numberOfElements; 34 public void print() |
17 i++) | 53 for (int & = head; & != 0; & = link[e])
18 link[i] = 0; 36 System.out .print{e + " "} ;
19 } 57 Svetem.out .printlni);
20 } 58 }

23 59)

Three test runs with same input - Passing / Failing

Clock Thread A Thread B Thread C

1 enqueue(11)

2 26 link[elem] = 0; // link[11] = ©

3 28 if (head == 0) (/o0==0

4 20 head = elem; /f head = 11

5 36 tall = elem; Jf tail = 11

1

6 — dequeue()

7 42 elem = head /f elem = 11

8 43 if (elem == tail) /s 11 == 12

9 44 tail = 0; 17

10 47 head = link[head]; // head = ¢

11 30 return elem; /{ returm 11

12 = engqueue (95)

13 26 link[elem] = 0; s/ Iink{ss] =0

14 28 if (head == 0) /0 ==0

15 20 head = elem; // head = ss5

16 36 tail = elem; J/ tail = s5
Clock Thread A Thread B Thread C

1 enqueue(ll)

2 26 link[elem] = 0; // linki11] = 0

3 28 if (head == 0) /o0 ==10

4 20 head = elem; /7 head = 11

5 _1} dequeue ()

6 42 elem = head // elem = 11

]

7 36 tail = elem; JF tail = 11 <

8 —3r 43 if (elem == tail) /s 11 == 11

9 44 tail = 0; i

10 —J'> engqueue (95)

11 26 link[elem] = 0; /f 1ink[35] = 0

12 28 if (head == 0) 11 == 0

13 32 link[tail] = elem; // link{o] = 25

14 36 tail = elem; // tail = 38

15 47 head = link[head]; // head =

[
Tu\

16 30 return elem; // return

Three test runs with same input - Passing

Clock Thread A Thread B Thread C
1 enqueue(ll)
2 26 link[elem] = 0; // Iinki11] = o
3 28 1f (head == 0) ¢/ 0 ==
4 20 head = elem; /¢ head = 11
5 LN dequeue ()
6 42 elem = head /{ alem = 11
7 36 tail = elem; J/ tail = 11 <
g 3, 8 if (elem == tail) s/ 11 == 11
9 4 tail = 0; i
10 47 head = link[head]; // head = o
11 50 return elem; /{ raturn 11
12
4
13 — enqueue (95)
14 26 link([elem] = 0; // Iink(ss5] = 0
15 28 if (head == 0) /11 ==0
16 20 head = elem; // head = 35
17 36 tall = elem; /i tail = 85

Jalapeno - DejaVu
Jalapeino - Research VM for Java servers, developed at the IBM T.J. Watson Re-

search Center.

- Designed for scalability (SMP), high performance, sophisticated thread support,
availability, rapid response,..

- Papers are available at http://jikesrvm.org/ (redirected from IBM'’'s research page)

- Overview of Jalapefno: see [1]

DejaVu - Deterministic Java Utility is a tool to capture, alter, and replay Thread
schedules.

- Running as part of Jalapefio VM

- Making failures reproducible by capturing a non-deterministic run and replaying it
deterministically.

Jalapeino and Scheduling

Using implementation of the garbage collector to do scheduling.

Quasi-preemptive scheduling

Safe point - /s a program location where the compiler that created the method
body is able to describe where all the live references exit.

Yield point - is a safe point located at a method prologue (such as function in-
vocation or at a loop back-edge).

Thread switching takes place only when a running thread has reached a yield point.

Capturing and playbacking

Dejavu is using the yield points as global clock values

During recording Dejavu stores global clock values of thread switches

During playback a thread switch is forced at every yield point

Different sequences of global clock values can be generated

Dejavu will use them to force a thread switch

Can be used for test generation

Capturing thread schedule - another approach [2]

class Tast {
static public volatile int £ = 0;
// shared variable
static public volatile int g = 20;
// shared variable
statie public void main(String argv[]) {
int j; // local variable
MyThread t1 = new MyThread();
tl.start();
j = 20;
System.out .println('‘f = *° + f

main tl main tl main tl mgin tl

+”j=”+j);

)
}

class MyThread extends Thread {

public void run() {

int k; // local variable

k = b;

ti start

| j=20

k=3
f=f+k

B=g-k

tl start
H k=35

j=20
print(f)

tl . start

i= 20

jrint(f)

|

k=5
f=f+k

U print(f) f=1+
£

j=20
! print(f) k
| =p-k
Test.g = Test.g - k;

y1) (b) ©) (d)

Test.f = Test.f + k; g=g—k

ER

- Thread schedule is a sequence of time intervals (time slices), containing thread
schedule information

- Logical thread schedules: Generate equivalence classes for different order of ac-

cess to shared variable

- Use logical thread schedule information with physical thread schedule

Isolating failure with Delta Debugging

A thread schedule is defined as a list of n clock times: t1,...t,

Padded form of example results:

<6,12,17,17,17 > - passing thread schedule in the padded form
< 5,7,8,10,15 > - failure-inducing thread schedule
< 5,7,8,13,17 > - passing thread schedule

stest is defined to return:

v If the queue holds the value 95
X if the queue is empty

? otherwise

Difference decomposition

- Difference of two schedules T + and T x are defined as
§ .17 — 7 with 6(7v) = (Tx)

- Set of all differences:
C=r7"

- Decompose § in number of thread switch changes 6;

- A schedule difference § between two schedules

T =< tvr,....top, > and Tx =< tx1,....tx,, > is defined as 6 = 61 o0 20 ... od, where each
di: T — T Maps tv; to tx;; that is §;(Tv) =< tiv, ..., tic1v, i, tvig1, oo tvign >

o:CxC — C is defined as (6 00)(T) = 6;(6;(T))

Atomic decomposition

0; = 51',1 O5¢,2 O.... O6i,|t,,,;—tx,,;| where each 52',]' is defined as 52',]'(Tv) = 5¢7j(< tv1,tvo, ..., tvpy >) =
=< tvl, th, ceny t-/@'_l, tvg, tui_{_l, tun >

where t./ is the value altered by §; ;; that is
— tv; + 1 if tv; < tx;
— tv; — 1 if tv; > tx;

Tests | 811 | 62.162282380452.5 | 3.183.083,353,483,503.603,703,803.0 | 04,184.084.354.484,554 6047 | 551852 Schedule Outcome

T,) .. 6,12,17,17,17) v
Ty | O OO0OoaQ OOoooDODOooOoooao ODoooooo oo (5,7,8,10,15) X
(1 a OOoo0oaog OOoooooooao Coe (5,7,8,17,17) v
2)| O o e e e o e e o e e o Y e o o o s Y (5,7.8,10,17) X
(3) | O OOO0DO0OO0O | OoOo0oooDoooo | oooag - - (5,7,8,13,17) v
(4| O OO0O00O0 |O0O0o0oo0oo0oo0ooo0 | oooooao (5.7.8,11, 17} v
Result O

Generating altered schedules with fuzzy approach

Failing test run — passing test run
Passing test run — failing test run

Start from existing schedule
Generate similar test cases to optimize determining differences
Use simple Gaussian distribution centered around t:

From given schedule T' =< t1,t2,....,t, > generate T =< f(t1), f(t2),...., f(t,) >, where
f(t) is a perturbation function. - Widen distribution until an altered schedule is found

Case study - Ray tracer

25 publie class Scens { ...

44
45
81
82
84
85
a1
92
130
131

132
134
135
733

private static int ScenesLoaded = 0;
(more methods. ..)

private

int LoadScene (String filename) {

int 0OldSceneslLoaded = Scenealoaded;

(more initializations. .)
infile = new DataInputStream(...);
{more code. ..)

Scenealoaded = 0ldSceneslLoaded + 1;

System.out.println("" +

ScenesLoaded + " scenes loaded."

}

yield points)

Time |

Thread Schedule Celta Debugging Log

n o
49
o
4%
+
B

0 i an 40 50 60 70 a0 an 100]] i 15 20 25 30 L) 40 45
Thread switches Tests executed

- Each ray-tracing thread calls LoadScene — race condition — no update for Sce-
nesl oaded
- Record of failing schedule T «x
Using fuzzy approach it took 66 test to generate a passing schedule

More than a million yield points — 3,842,577,240 atomic deltas have been applied
Outcome: Amount of time was larger for T +

contained 3770 thread switches

Error isolated at yield point 59,772,127 — back tracing for a given set of yield
points has been implemented

50

Related work

Article about Debugging concurrent processes, presented by [5]:

- Alter thread schedules manually

- Main idea of the paper Isolating Failure-Inducing Thread Schedules, but solution
for automated testing.

Testing alternate schedules by [4]:

- Idea is to manipulate in order to get different schedules

- Using sleep or priorities

- Focus on coverage rather than on isolating failure causes

Conclusion and future work

- Method that automatically isolates the failure-inducing difference(s) between a pass-
ing and a failing schedule

- Purely experimental / analysis of the program in question is not required

- Use capturing, replaying, and isolating thread schedule as integrated part of testing
and debugging of concurrent applications

Use delta debugging

Focus on cause-effect chains and other circumstances

Integration of static analysis, dynamic analysis, and automated experiments

More case studies

Literature

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M.
F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, , and J. Whaley. The jalapeno virtual machine.
IBM Systems Journal, Vol 39, No 1, 2000.

[2] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of java multithreaded
applications. In SPDT 98: Proceedings of the SIGMETRICS symposium on Parallel
and distributed tools, pages 4859, New York, NY, USA, 1998. ACM Press.

[3] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread schedules.
In ISSTA 02: Proceedings of the 2002 ACM SIGSOFT international symposium on
Software testing and analysis, pages 210220, New York, NY, USA, 2002. ACM Press.

[4] Y. Nir G.Ratsaby O. Edelstein, E. Farchi and S. Ur. Multithreaded java pro-
gram test generation. IBM Systems Journal, 41(1):111-125, Februar 2002.

[5] J. M. Stone. Debugging concurrent processes: A case study., June 1988.

