Advanced Topics on Applied Systemtheory: Debugging SMV

Revision: 1.3

Delta Debugging — Programming Exercises

SS 2007
Johannes Kepler University
Linz, Austria

Dr. Toni Jussila
Institut for Formal Models and Verification

http://fmv.jku.at/kv

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

(Nu)SMV SMV

Revision: 1.3

NuSMV is a widely applied model checking tool for finite state machines.

both synchronous and asynchronous models

supports modular design

e BDD based and bounded model checking (CTL and LTL)

e well established

— 3rd party (companies & academic institutions) tools to read SMV models

e homepage http://nusmv.irst.itc.it/

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Input Language SMV[3

Revision: 1.3

We will concentrate on flat (no modules) SMV modules with reachability properties and
only Boolean variables.

Skeletal delta debugging algorithm:

1. eliminate C; variables,
e remove state variables (section VAR) and

e replace references to removed variables with Boolean constants. Simplify.
(sections ASSIGN and DEFINE)

2. if failure persists, update Cx, and continue from 1.

3. try removing C\ G, if OK, update C;, and continue from 1,

4. otherwise, increase granularity (decrease ().

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Example (two-bit counter)

SMV

MODULE main
VAR
bl: boolean;
b2: boolean;

ASSIGN

init (bl) = 0;

init (b2) = 0;

next (bl) = 1bl;

next (b2) = bl xor b2Z;
DEF INE

bad := bl & b2;
SPEC AG !bad

Applied Systemtheory — SS 2007 — Toni Jussila — JKU Linz

lbland!b2 bland!b2
O O
O O

bl and b2 b1 and b2

Revision: 1.3

Example: remove bl SMV

Revision: 1.3

Lines beginning with —— are comments.

MODULE main

VAR
—— bl: boolean;
b2: boolean;

ASSIGN

—— 1nit (bl) := 0;

init (b2) := 0;

—— next (bl) := !bl;

next (b2) := 1 xor b2; —-- can be simplified !b2;
DEFINE

bad := 1 & b2; —— can be simplified to b2

SPEC AG !bad

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Example: continue with b2

SMV

MODULE main

VAR
—— bl: boolean;
—— b2: boolean;
ASSIGN
—— 1nit (bl) := 0;
—— 1nit (b2) := 0;
—— next (bl) := !bl;
—— next (b2) := 1 xor b2;
DEFINE
bad := 1 & 1; —— can be simplified to 1

SPEC AG !bad

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Revision: 1.3

Remarks SMV[7

Revision: 1.3

e Non-trivial SMV knowledge is required.

— blindly commenting lines leads to syntactically incorrect models

e 2nd dimension: should variables be replaced by 0 or 1 or a combination thereof ?

e Boolean simplification is a potential source of error.

ib := (((gna | (!gna & ws)) & !(gna & (('laya & ((vv & ((f3 <=> 0)
0) & ((m1 <=> 0) & ((i1ha <-> 1) & (11 <=>0))))))))))));

e Goal: to produce the simplest possible SMV model, therefore

e your output should not contain comments nor unsimplified Boolean expressions.

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Tools to Test Against SMV

Revision: 1.3

e NuSMV
— given a model, what is the smallest such model with the same truth value

— real NusMv bugs ??

o smv2gbf
— translates SMV models to QBFs (encoding model checking problems)
— contains real bugs

— available from http://fmv. jku.at/smv2gbf/

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Quantified Boolean Formulas QBF[g

Revision: 1.3

e propositional formula having a quantifier (3/V) prefix.

1. (aVb)A(—aV —b) = SAT
2. Va3b((aVb)A(—aVv—-b)) = TRUE
3. Vbda((aVb)A(—aV-b)) = FALSE

e propositional formula = quantified formula with all variables existential

e using QBFs, several computational problems can be encoded more succintly than with
propositional formulas, however

e finding whether a formula is TRUE/FALSE is
harder

e model is not a set of literals but a free

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

QBFs in DIMACS Format QBF

Revision: 1.3

e CNF DIMACS format extended with quantification information

1.p cnf nl n2 n1=max. variable index, n2 = num. of clauses
2.e ul...un 0 duy,...un
3.a vl ...vm 0 VYvy,...vp

4. 11 -12 13 0 1V =l Vi3

e uy,...,un and vy,..., vy are natural numbers
e [1,—1r, I3 are integers (negative number meaning a negated literal)

e whenever symbol c is seen, the rest of a line is treated as a comment

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

10|

Delta Debugging QBF[11]

Revision: 1.3

Skeletal delta debugging algorithm:

1. eliminate (; clauses,
e decrease number of clauses (n2) accordingly

e if a variable no more used, remove it from the scoping information and normalize
variables (n1) ?7?

2. if failure persists, update ¢, and continue from 1.

3. try removing C\ G, if OK, update ¢ and continue from 1,

4. otherwise, increase granularity (decrease ().

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

QBF

Example

Va3b((aV b) A (—aV —b))

e as afile (a and b encoded as 1 and 2, resp.):

P
a

e
1

cnf 2 2 max variable idx = 2, 2 clauses
1 0 Ya
2 0 b
2 0 aVb
-1 -2 0 —a\V —b

e given this file as an argument, a QBF solver (Quantor) prints:

s TRUE
Cc gnt

(no variables exported)

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Revision: 1.3

12|

Example continued

QBF

Revision: 1.3

e removing first clause gives:

cnt 2 1

e still TRUE (after all, you removed a constraint)

e continue by removing the second clause

p cnft 0 O
c a 1l : : :
, e removing commented lines yields p cnf 0 0
©° (which is TRUE)
c 1 2 0
c -1 -2 0

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

13|

QBF

Tools to Test Against

e EBDDRES available from http://fmv. jku.at/ebddres.
— together with gbv (C. Wintersteiger, ETH Zirich)

— EBDDRES may create an incorrect trace that gbv detects

e Quantor available from http://fmv. jku.at/quantor.

— as with CNFs, you may eg. try to find the smallest FALSE instance

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

Revision: 1.3

14|

Grading QBF[15]

Revision: 1.3

e project assignments should be chosen by 29.3.2007 23:59 CET

e For a passing grade of the programming assignment, you should:
— choose target and implementation language and inform us,

— prepare a written report (README) with installation instructions and source code
and send it to us,

— DEADLINE: 12.6.2007 16:00 CET,
— book a demonstration time before end of semester.

— All material should be sentto {biere, toni. jussila}@jku.at.

Applied Systemtheory —SS 2007 — Toni Jussila — JKU Linz

