
Advanced Topics on Applied Systemtheory: Debugging SMV
Revision: 1.3

1

Delta Debugging – Programming Exercises

SS 2007

Johannes Kepler University

Linz, Austria

Dr. Toni Jussila
Institut for Formal Models and Verification

http://fmv.jku.at/kv

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



(Nu)SMV SMV
Revision: 1.3

2

NuSMV is a widely applied model checking tool for finite state machines.

• both synchronous and asynchronous models

• supports modular design

• BDD based and bounded model checking (CTL and LTL)

• well established

– 3rd party (companies & academic institutions) tools to read SMV models

• homepage http://nusmv.irst.itc.it/

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Input Language SMV
Revision: 1.3

3

We will concentrate on flat (no modules) SMV modules with reachability properties and
only Boolean variables.

Skeletal delta debugging algorithm:

1. eliminate Cx variables,

• remove state variables (section VAR) and

• replace references to removed variables with Boolean constants. Simplify.
(sections ASSIGN and DEFINE)

2. if failure persists, update Cx, and continue from 1.

3. try removing C \Cx, if OK, update Cx, and continue from 1,

4. otherwise, increase granularity (decrease Cx).

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Example (two-bit counter) SMV
Revision: 1.3

4

MODULE main

VAR

b1: boolean;

b2: boolean;

ASSIGN

init(b1) := 0;

init(b2) := 0;

next(b1) := !b1;

next(b2) := b1 xor b2;

DEFINE

bad := b1 & b2;

SPEC AG !bad

!b1 and !b2 b1 and !b2 

!b1 and b2 b1 and b2 

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Example: remove b1 SMV
Revision: 1.3

5

Lines beginning with -- are comments.

MODULE main

VAR

-- b1: boolean;

b2: boolean;

ASSIGN

-- init(b1) := 0;

init(b2) := 0;

-- next(b1) := !b1;

next(b2) := 1 xor b2; -- can be simplified !b2;

DEFINE

bad := 1 & b2; -- can be simplified to b2

SPEC AG !bad

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Example: continue with b2 SMV
Revision: 1.3

6

MODULE main

VAR

-- b1: boolean;

-- b2: boolean;

ASSIGN

-- init(b1) := 0;

-- init(b2) := 0;

-- next(b1) := !b1;

-- next(b2) := 1 xor b2;

DEFINE

bad := 1 & 1; -- can be simplified to 1

SPEC AG !bad

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Remarks SMV
Revision: 1.3

7

• Non-trivial SMV knowledge is required.

– blindly commenting lines leads to syntactically incorrect models

• 2nd dimension: should variables be replaced by 0 or 1 or a combination thereof ?

• Boolean simplification is a potential source of error.

ib := (((gna | (!gna & ws)) & !(gna & ((!aya & ((vv & ((fj <-> 0) & ((bcb <->

0) & ((mi <-> 0) & ((iha <-> 1) & (li <-> 0))))))))))));

• Goal: to produce the simplest possible SMV model, therefore

• your output should not contain comments nor unsimplified Boolean expressions.

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Tools to Test Against SMV
Revision: 1.3

8

• NuSMV

– given a model, what is the smallest such model with the same truth value

– real NuSMV bugs ??

• smv2qbf

– translates SMV models to QBFs (encoding model checking problems)

– contains real bugs

– available from http://fmv.jku.at/smv2qbf/

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Quantified Boolean Formulas QBF
Revision: 1.3

9

• propositional formula having a quantifier (∃/∀) prefix.

1. (a∨b)∧ (¬a∨¬b) ⇒ SAT
2. ∀a∃b((a∨b)∧ (¬a∨¬b)) ⇒ TRUE
3. ∀b∃a((a∨b)∧ (¬a∨¬b)) ⇒ FALSE

• propositional formula = quantified formula with all variables existential

• using QBFs, several computational problems can be encoded more succintly than with
propositional formulas, however

• finding whether a formula is TRUE/FALSE is
harder

• model is not a set of literals but a tree

a

b b

1 1

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



QBFs in DIMACS Format QBF
Revision: 1.3

10

• CNF DIMACS format extended with quantification information

1. p cnf n1 n2 n1 = max. variable index, n2 = num. of clauses
2. e u1...un 0 ∃u1, . . .un
3. a v1 ...vm 0 ∀v1, . . .vm
· · ·
4. l1 -l2 l3 0 l1∨¬l2∨ l3
· · ·

• u1, . . . ,un and v1, . . . ,vm are natural numbers

• l1,−l2, l3 are integers (negative number meaning a negated literal)

• whenever symbol c is seen, the rest of a line is treated as a comment

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Delta Debugging QBF
Revision: 1.3

11

Skeletal delta debugging algorithm:

1. eliminate Cx clauses,

• decrease number of clauses (n2) accordingly

• if a variable no more used, remove it from the scoping information and normalize
variables (n1) ??

2. if failure persists, update Cx, and continue from 1.

3. try removing C \Cx, if OK, update Cx and continue from 1,

4. otherwise, increase granularity (decrease Cx).

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Example QBF
Revision: 1.3

12

∀a∃b((a∨b)∧ (¬a∨¬b))

• as a file (a and b encoded as 1 and 2, resp.):

p cnf 2 2 max variable idx = 2, 2 clauses
a 1 0 ∀a
e 2 0 ∃b
1 2 0 a∨b
-1 -2 0 ¬a∨¬b

• given this file as an argument, a QBF solver (Quantor) prints:

s TRUE

c qnt (no variables exported)

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Example continued QBF
Revision: 1.3

13

• removing first clause gives:

p cnf 2 1

a 1

e 2

c 1 2 0

-1 -2 0

• still TRUE (after all, you removed a constraint)

• continue by removing the second clause

p cnf 0 0

c a 1

c e 2

c 1 2 0

c -1 -2 0

• removing commented lines yields p cnf 0 0

(which is TRUE)

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Tools to Test Against QBF
Revision: 1.3

14

• EBDDRES available from http://fmv.jku.at/ebddres.

– together with qbv (C. Wintersteiger, ETH Zürich)

– EBDDRES may create an incorrect trace that qbv detects

• Quantor available from http://fmv.jku.at/quantor.

– as with CNFs, you may eg. try to find the smallest FALSE instance

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz



Grading QBF
Revision: 1.3

15

• project assignments should be chosen by 29.3.2007 23:59 CET

• For a passing grade of the programming assignment, you should:

– choose target and implementation language and inform us,

– prepare a written report (README) with installation instructions and source code
and send it to us,

– DEADLINE: 12.6.2007 16:00 CET,

– book a demonstration time before end of semester.

– All material should be sent to {biere,toni.jussila}@jku.at.

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz


