
Advanced Topics on Applied Systemtheory: Debugging gdb 1

Symbolic Debugging

SS 2007

Johannes Kepler University

Linz, Austria

Dr. Toni Jussila
Institut for Formal Models and Verification

http://fmv.jku.at/kv

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Symbolic Debugging gdb 2

• Use an external observation tool to analyze program state ie.

– commands to be executed (program counter) and

– program data.

• term symbolic refers to the fact that the tool operates on source level (as opposed to
a machine-level debugger)

Benefits over printf-debugging (Zeller):

1. getting started fast

2. flexible observation

3. transient sessions

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

GNU Debugger gdb gdb 3

• initially written by Richard Stallman 1986

• interactive program controlled via a command line

• supports: C, C++, Fortran, Ada, Modula-2

• works on both source level and machine code level

• machine code support for many processors

• http://en.wikipedia.org/wiki/GNU_Debugger

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Case study: ebddres gdb 4

• ebddres is a BDD based QBF solver producing refutation proofs

elim_univ() elim_exist()

main()

parse() sat() core() trace()

• we will study a failure in procedure init buckets()

• also a good test case for delta debugging

• important data structures: Var, Clause, And, Or, Ele

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Starting gdb gdb 5

• executables need to be instrumented with debugging information

– locations, names and types of variables and functions

– correspondence between source lines and machine code addresses

• GNU Compiler Collection (gcc) produces this with switch -g

$ gcc -g -o sample sample.c

• then just start gdb with the executable

$ gdb sample

GNU gdb 6.1, Copyright 2004 Free Software Foundation, Inc.

(gdb)

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

With GNU Emacs gdb 6

GNU Emacs provides integrated support for using gdb.

• started with M-x gdb where M is
the Meta character

• all input and output of gdb goes
through an Emacs buffer

• view and edit source files while debugging

• keyboard shortcuts for common gdb commands

– C-c C-s is gdb command step, with argument M-5 C-c C-s

– C-c C-n is gdb command next

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

General commands gdb 7

• info displays information of the program being debugged

– info warranty; info all-registers;

• show displays information of the debugger

– show charset; show architecture;

• help followed by a command displays its purpose and usage

• set set variable value to an expression

– set args a1 a2; set i=j+k;

• quit

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Stopping and Continuing gdb 8

• breakpoint: execution stops whenever a certain location (function, source code line) is
reached (command break)

• watchpoint: stop whenever the value of some expression changes (command watch)

• catchpoint: stop whenever a special event occurs (C++ exception, loading a dynamic
library, catching a signal) (command catch)

• when a program stops, the called functions (stack frames) can be displayed by printing
a back trace (command bt)

• info {breakpoints,watchpoints}

• list, prints source lines at the breakpoint

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Stopping and Continuing II gdb 9

Traverse source program line by line:

• command step count, execute count line(s), follow function calls

– library functions do not have debugging information

• command next count, execute count line(s), do not follow function calls

Resuming execution:

• command continue, abbr. c, continues execution

• command finish, continues execution until this frame finishes

• command until, abbr. u, continues execution until a loop finishes

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Stopping and Continuing III gdb 10

• break-, watch-, and catchpoints can be augmented with

1. ignorecount: ignore bnum count

2. condition: condition bnum expression

3. a command list: command bnum ...

• Ignorecount is a natural number that is decremented each time a breakpoint is reached.
Break only if zero (default).

• Condition is an expression. Break only if this expression non-zero.

• Command list allows for instance data values be printed each time a breakpoint trig-
gers.

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Deleting Breakpoints gdb 11

• command delete bnum, abbr. d bnum

– without argument deletes all breakpoints

• alternative, command clear

– argument line number or function

• if you think you will need the breakpoint in future, use command disable bnum

• to reactivate, use command enable

– variant enable bnum once or enable bnum delete

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Examining Data gdb 12

• command print abbr. p, prints expressions of your source language

• command x/nfu, examines memory at a lower level

– n, repeat count; f, display format; u, unit size

– example: x/3uh 0x54320, three halfwords (h) of memory as unsigned decimal
integers (u).

• command display, abbr. d, causes a value of an expression to be printed whenever
program stops

• command whatis, shows the data type of a variable

• command ptype, prints the detailed type of variable

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Convenience Variables gdb 13

• for complex data access, you may need new variables to store values to

• gdb supports this by convenience variables, prefixed by $

• several defined internally, like:

– $pc, the value of the program counter (x/i $pc)

– $sp, the value of the stack pointer

– $eax, internal register

– show convenience; info registers

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Examining Program Code gdb 14

• command list displays source lines

– list 1000, print listsize lines starting from line 1000

– list main, print listsize lines starting from function main

– list +, print lines just after the lines last printed

• set listsize allows to modify number of lines

• show listsize prints its current value

• edit line allows modifying source lines, default editor /bin/ex

– more practical under GNU Emacs

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

At Machine Level gdb 15

• command info line linenumber

– show the start and end addresses of the machine code of linenumber

• conversely, info line addr shows which source line covers address addr

• command disassemble, abbr. disas, shows the assembly code from a given ad-
dress range

• command set dissassembly-flavor intel

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Case Study: gcd gdb 16

Source code:
int gcd(int a, int b)

{

int t;

while (b != 0)

{

t = b;

b = a % b;

a = t;

}

return a;

}

Under gdb command disas gcd gives:

<gcd+0>: push ebp
<gcd+1>: mov ebp,esp
<gcd+3>: sub esp,0x10
<gcd+6>: jmp <gcd+30>
<gcd+8>: mov eax,DWORD PTR [ebp+12]
<gcd+11>: mov DWORD PTR [ebp-4],eax
<gcd+14>: mov eax,DWORD PTR [ebp+8]
<gcd+17>: cdq
<gcd+18>: idiv DWORD PTR [ebp+12]
<gcd+21>: mov DWORD PTR [ebp+12],edx
<gcd+24>: mov eax,DWORD PTR [ebp-4]
<gcd+27>: mov DWORD PTR [ebp+8],eax
<gcd+30>: cmp DWORD PTR [ebp+12],0x0
<gcd+34>: jne <gcd+8>
<gcd+36>: mov eax,DWORD PTR [ebp+8]
<gcd+39>: leave
<gcd+40>: ret

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

Postmortem Debugging gdb 17

Several operating systems can be set up to allow dumping of a core file. This file is created
if the program crashes and contains the programs memory state.

• ulimit -c shows the maximum size of core file

• gdb supports core files

$ gdb ./bdd_try core

...

Core was generated by ‘./bdd_try /qbf/adder-2-sat.qdimacs’.

Program terminated with signal 11, Segmentation fault.

#0 0x08050ceb in init_buckets () at bdd_try.c:4334

4334 cl = clauses + var->occurrences[j];

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

What is missing? gdb 18

Given a point, where your program fails, why can you not go backwards ?

• memory reasons, you would have to remember each program state
(at machine code level), call stack etc.

Inserting a breakpoint to point of failure may lead to a tedious session; the breakpoint may
trigger arbitrarily many times before failure reached.

• a breakpoint can be instrumented with a command sequence.
Let this sequence be continue.

• rerunning the program causes failure. Then, however, info break tells how many
times your breakpoint triggered.

• This gives you the new ignore count. Use binary search to determine where program
state was corrupted.

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

User-defined Commands gdb 19

It is possible to define your own command sequences and document them:

define adder

print $arg0 + $arg1 + $arg2

end

• define command to define functions

• document command to write their documentation (shown by help command)

Applied Systemtheory – SS 2007 – Toni Jussila – JKU Linz

