

Threaded Programming

● SMT, Multi-Core Processors
– are commodity now
– key to faster processors and applications

● complex programming
– new kind of bugs: data races, dead locks
– more complex than pointers (as in C)
– non deterministic (schedule)

● but also allow simpler designs
– pipelining, boss/workers, producer/consumer

Threads

● parallel/distributed programming
– threads, processes, clusters
– requires synchronisation

● single address space
– same global data and heap data
– seperate stacks, program counter, registers
– data synchronization: shared variables
– control synchronization: mutex, conditions

Deadlock

● threads T1, T2, synchronization m1, m2
– T1 waits to synchronize with T2 on m1
– T2 waits to synchronize with T1 on m2
– m1 can only be established by T2 after m2
– m2 can only be established by T1 after m1

● a deadlock freezes a system
● may only occur in rare corner cases

– hard to find and debug

Finding Deadlocks

● models
– either build or extract abstract model
– model checking or unit testing
– goal is exhaustive simulation of all schedules

● search for cyclic dependencies
– priority inversion (static lock/mutex order)
– cycles in lock dependency graph

● generate masif load, insert jitter

Debugging Deadlocks

● access to program state of all threads
– either through debugging/logging thread
– or with symbolic debuggers

● attaching symbolic debuggers
– after program seemed to be frozen
– gdb program.exe pid

– threads, thread 2, bt

● again trade-off between printf style
debugging and symbolic debugging

Data Races

● unprotected access to shared data
– protection: locks/mutex/semaphore/monitor
– read/write access by multiple threads
– value of shared data depends on schedule

● hard to find without sandboxing
– access is just a pointer dereference

● in contrast to cyclic lock dependencies
– locking can be wrapped in checking code

Proper Lock Protection

THREAD1

lock (mu);

v = v + 1;

unlock (mu);

THREAD2

lock (mu);

v = v + 1;

unlock (mu);

Happens-Before Relation

● dependency between events
– events in the same thread/process ordered

by execution order
– synchronization among threads/processes

● sending/receiving message
● locking/unlocking (of one particular lock)
● waiting for a condition/enabling a condition

● shared access events should be orderered
by happens before relation

Improper Lock Protection 1

THREAD1

lock (m1);

v = v + 1;

unlock (m1);

THREAD2

lock (m2);

v = v + 1;

unlock (m2);

m1 != m2

Improper Lock Protection 2

THREAD1

y = y + 1;

lock (mu);

v = v + 1;

unlock (mu);

THREAD2

lock (mu);

v = v + 1;

unlock (mu);

y = y + 1;

But access events to y still in happens-before relation!

Eraser/Lock Set Algorithm

● check for locking discipline
– shared access protected by at least one lock
– collect lock sets at access events
– check intersection of lock sets non empty

● if a lock set becomes empty
– either improper locking
– even though no problem in this run
– some cases of false positives / warnings

Eraser False Warnings

● initialization / collection example
– data is initialized by boss thread
– work is spawned off to worker threads
– results are collected and displayed by boss

● read / read vs read / write
– attach state to data

new

shared

exclusive

shared modified

High-Level Data Races

● view on protected data consistent
– data X and Y accessed together in thread 1
– access to X alone in thread 2 is fine
– but it is not view consistent to access Y in

thread 3 alone

● similar refinements as with Eraser

