
BOUNDED MODEL CHECKING
KV Software Verification WS 18/19

Martina Seidl
Institute for Formal Models and Verification

Example: Verifiction with SMT

1/25

Expressiveness against Efficiency

� SAT: efficient, involved encodings
� FO (first-order logic): often too powerful
� satisfiability with respect to some theory is required

(non-standard interpretations are not of interest)
Example: x+ y < z ∨ ¬(x+ 1 ≤ y → x < z)

� theory needs not be first-order axiomatizable
� specialized inference method for each theory

� SMT: sweetspot between SAT and FO
� propositional logic + domain specific reasoning
� in general more efficient than with general-purpose solvers with incorporated

theory axioms

2/25

Satisfiability Modulo Theories (SMT)

f(x) 6= f(y) ∧ x+ u = 3 ∧ v + y = 3 ∧ u = a[z] ∧ v = a[w] ∧ z = w

� formulas in first-order logic
� usually without quantifiers, variables implicitly existentially quantified
� but with sorted / typed symbols and
� functions / constants / predicates are interpreted
� SMT quantifier reasoning weaker than in first-order theorem proving (FO)
� much richer language compared to propositional logic (SAT)

� many (industrial) applications
� standardized language SMTLIB used in applications and competitions

3/25

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)

→

m = y;
} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

This program is supposed
to return the middle
(median) of three numbers.

4/25

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)

→

m = y;
} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

Some test cases:

middle (1, 2, 3) = 2
middle (1, 3, 2) = 2
middle (2, 3, 1) = 2
middle (3, 1, 2) = 2
middle (3, 2, 1) = 2
middle (1, 1, 1) = 1
middle (1, 1, 2) = 1
middle (1, 2, 1) = 1
middle (2, 1, 1) = 1
middle (1, 2, 2) = 2
middle (2, 1, 2) = 2
middle (2, 2, 1) = 2

4/25

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)

→

m = y;
} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

Missed test case:

middle (2, 1, 3) = 1

4/25

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
→ m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

Missed test case:

middle (2, 1, 3) = 1

BUG !

4/25

Specification for Middle

Let a be an array of size 3 indexed from 0 to 2.

a[i] = x ∧ a[j] = y ∧ a[k] = z

∧
a[0] ≤ a[1] ∧ a[1] ≤ a[2]
∧
i 6= j ∧ i 6= k ∧ j 6= k

→
m = a[1]

Note: coming up with this specification is a manual process

5/25

Encoding of Middle in Logic

int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

6/25

Encoding of Middle in Logic

int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

(y < z ∧ x < y → m = y)
∧
(y < z ∧ x ≥ y ∧ x < z → m = y)
∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z)
∧
(y ≥ z ∧ x > y → m = y)
∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x)
∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z)

6/25

Encoding of Middle in Logic

int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

(y < z ∧ x < y → m = y)
∧
(y < z ∧ x ≥ y ∧ x < z → m = y)
∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z)
∧
(y ≥ z ∧ x > y → m = y)
∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x)
∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z)

automatic

6/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

� program is correct if “P → S” is valid

� program has a bug if “P ∧ ¬S” is satisfiable (has a model)

7/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

� program is correct if “P → S” is valid

� program has a bug if “P → S” is invalid

� program has a bug if “P ∧ ¬S” is satisfiable (has a model)

7/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

� program is correct if “P → S” is valid

� program has a bug if “P → S” is invalid

� program has a bug if negation of “P → S” is satisfiable

� program has a bug if “P ∧ ¬S” is satisfiable (has a model)

7/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

� program is correct if “P → S” is valid

� program has a bug if “P → S” is invalid

� program has a bug if negation of “P → S” is satisfiable

� program has a bug if “P ∧ ¬S” is satisfiable (has a model)

7/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

� program has a bug if “P ∧ ¬S” is satisfiable (has a model)

(y < z ∧ x < y → m = y) ∧
(y < z ∧ x ≥ y ∧ x < z → m = y) ∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z) ∧
(y ≥ z ∧ x > y → m = y) ∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x) ∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z) ∧

P

7/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

� program has a bug if “P ∧ ¬S” is satisfiable (has a model)

(y < z ∧ x < y → m = y) ∧
(y < z ∧ x ≥ y ∧ x < z → m = y) ∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z) ∧
(y ≥ z ∧ x > y → m = y) ∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x) ∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z) ∧

P

¬S

a[i] = x ∧ a[j] = y ∧ a[k] = z ∧
a[0] ≤ a[1] ∧ a[1] ≤ a[2] ∧
i 6= j ∧ i 6= k ∧ j 6= k ∧
m 6= a[1]

7/25

Encoding with LIA in SMTLIB2
(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y)))
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))

(check-sat) (get-model) (exit)

8/25

Encoding with LIA in SMTLIB2
(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y)))
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))

(check-sat) (get-model) (exit)

8/25

Encoding with LIA in SMTLIB2
(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y)))
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))

(check-sat) (get-model) (exit)

8/25

Encoding with LIA in SMTLIB2
(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y)))
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))

(check-sat) (get-model) (exit)

8/25

Encoding with LIA in SMTLIB2
(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y)))
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))

(check-sat) (get-model) (exit)

8/25

Encoding with LIA in SMTLIB2
(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y)))
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))

(check-sat) (get-model) (exit)

8/25

Bounded Model Checking

9/25

Model Checking

Model Checker

Formal Specification
(Temporal Formula)

Model
(Kripke Structure)

Requirements Implementation

VERIFIED

Turing Award for

� Queille, J. P.; Sifakis, J. (1982), "Specification and verification of concurrent systems in CESAR", International Symposium on
Programming, citations: 1900

� Edmund M. Clarke, E. Allen Emerson: "Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal
Logic". Logic of Programs 1981: 52-71, citations: 3895

10/25

Model Checking

Model Checker

Formal Specification
(Temporal Formula)

Model
(Kripke Structure)

Requirements Implementation

ERROR +
Error Trace

debug

Turing Award for

� Queille, J. P.; Sifakis, J. (1982), "Specification and verification of concurrent systems in CESAR", International Symposium on
Programming, citations: 1900

� Edmund M. Clarke, E. Allen Emerson: "Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal
Logic". Logic of Programs 1981: 52-71, citations: 3895

10/25

Types of Model Checking

General question: Given a system K and a property p, does p hold
for K (i.e., for all initial states of K) ?

� Explicit state model checking
� enumeration of the state space
� state explosion problem

� Symbolic model checking
� representation of model checking problem as logical formula (e.g., in

propositional logic (SAT) or QBF)

11/25

Bounded Model Checking

basic idea: search for a counter-example of bounded length k

� encoding in propositional logic (or extensions)

� use SAT solvers to find such a counter-example:
formula is satisfiable iff a bug is found, i.e., an execution of program that
violates the claim.

� benefits:
� bit-precise encoding of the real semantics
� powerful SAT solvers
� difficulty of the problem is controllable (by selection of k)

� drawback: incomplete for k that is too small

⇒ can be used for debugging
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu (1999) Symbolic Model Checking without BDDs. TACAS 193-207,
citations: 2580

12/25

Propositional Satisfiability (SAT)

Given propositional formula φ. Is there a satisfying truth assignment
for φ?

� SAT solvers are very powerful solving tools

� Using SAT as a “programming language” is very successful in many
domains

Example

Given: φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3)

Question: Is φ satisfiable?

Yes! For example: x1 = x3 = true, x2 = false.

13/25

Symbolic System Representation

Kripke Structure: Description of the System

States: {s1, s2, s3}
Initial state: {s1}

Transition Relation: {(s1, s1), (s1, s2),
(s2, s2), (s2, s3),
(s3, s1), (s3, s2)}

Propositions: x, y
Labeling: {(s1, {¬x,¬y}),

(s2, {x, y}),
(s3, {¬x, y})},

Translation to SAT

Initial state: I((x, y)) = ¬x ∧ ¬y
Transition Relation: T ((x, y), (x′, y′)) =((x′ ⇔ x ∨ y) ∧ (y′ ⇔ y)) ∨

((x′ ⇔ ¬y) ∧ (y′ ⇔ x ∨ ¬y))

14/25

Bounded Model Checking (Safety)

� Given a Kripke structure K. Is there a path of length k to a bad state s,
i.e., a certain property p is violated in s?

� In other words: there is a path where Gp does not hold in K

� Observation: if Gp does not hold in K, there is a finite
counter-example.

� Idea: consider paths of fixed length k
� encode problem to propositional formula φ
� pass problem to SAT solver
� φ is true ⇔ model of φ is counter-example
� if φ is false, then increase k

15/25

Bounded Model Checking (Safety)

A bounded model checking (BMC) problem for Kripke structure K and safety
property Gp is encoded by

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk) ∧B(sk)

where

� I(s0) is true⇔ s0 is an initial state

� T is the transition relation of K

� B(sk) is true⇔ sk is a bad state, i.e., ¬p holds in sk

16/25

Bounded Model Checking for Software

17/25

Bounded Model Checking of ANSI-C Programs

� idea:
� unwind program into equation
� check equation using SAT/SMT

� benefits:
� completely automated
� treatment of pointers and dynamic memory is possible

� properties:
� simple assertions
� run time errors (pointers/arrays)
� run time guarantees (WCET)

for example implemented in tool CBMC

A tool for checking ANSI-C programs E Clarke, D Kroening, F Lerda Tools and Algorithms for the Construction and Analysis of Systems,
168-176, citations: 1339

18/25

From C to SAT/SMT

� removal of side effects
example: j=i++ is rewritten to j=i; i=i+1

� control flow is made explicit
example: continue, break are replaced by goto

� transformation of loops to while (...) ...
� while (...) ... loops are unwound

� all loops must be bounded
→ analysis may become incomplete

� constant loop bounds are found automatically, others must be specified by
user

� to ensure sufficient unwinding, “unwinding assertions” are added

19/25

From C to SAT/SMT: Loop Unwinding

original function:

void f (...) {
...
while (cond) {
body;

}
rest;

}

with unwounded loop:

void f (...) {
...
if (cond) {

body;
if (cond) {
body;
if (cond) {
body;
assert(!cond);

}
}

}
rest;

}

after last iteration an assertion is added:
violated if program runs longer than bound permits

20/25

From C to SAT/SMT: SSA

single static assignment (SSA) form: fresh variable for LHS of each
assignment

example:

x = x + y;
x = x * 2;
a[i] = 100;

is translated to

x1 = x0 + y0;
x2 = x1 * 2;
a1[i0] = 100;

from which the following SMT formula can be derived

(x1 = x0 + y0) ∧ (x2 = x1 ∗ 2) ∧ (a1[i0] = 100)

21/25

From C to SAT/SMT: Conditionals

� for each join point, new variables with selectors are added

� example:

original program:

if (v)
x = y;

else
x = z;

w = x;

⇒

rewritten program:

if (v0)
x0 = y0;

else
x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2;

22/25

From C to SAT/SMT: Example

int main () {
int x, y;
y = 1;
if (x)

y–;
else

y++;

assert
(y==2 || y==3);

}

⇒

int main () {
int x, y;
y1 = 1;
if(x0)
y2 = y1-1;

else
y3 = y1+1;

y4 = x0 ? y2 : y3;

assert
(y4==2 || y4==3);

}

⇒

((y1 = 1) ∧ (y2 = y1 − 1) ∧ (y3 = y1 + 1) ∧ (y4 = x0?y2 : y3))

→ ((y4 = 2) ∨ (y4 = 3))

23/25

Arrays

� functions “read” and “write”: read(a, i), write(a, i, v)

� axioms

array congruence

∀a, i, j : i = j → read(a, i) = read(a, j)

read over write 1

∀a, v, i, j : i = j → read(write(a, i, v), j) = v

read over write 2

∀a, v, i, j : i 6= j → read(write(a, i, v), j) = read(a, j)

� used to model memory (HW and SW)

24/25

Array to EUF Example

� eagerly reduce arrays to uninterpreted functions:

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

� Example:

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

UNSATISFIABLE

25/25

Array to EUF Example

� eagerly reduce arrays to uninterpreted functions:

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

� Example:

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

UNSATISFIABLE

25/25

Array to EUF Example

� eagerly reduce arrays to uninterpreted functions:

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

� Example:

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

UNSATISFIABLE

25/25

Array to EUF Example

� eagerly reduce arrays to uninterpreted functions:

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

� Example:

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

UNSATISFIABLE

25/25

Array to EUF Example

� eagerly reduce arrays to uninterpreted functions:

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

� Example:

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

UNSATISFIABLE

25/25

Array to EUF Example

� eagerly reduce arrays to uninterpreted functions:

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

� Example:

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

UNSATISFIABLE

25/25

