BOUNDED MODEL CHECKING
KV Software Verification WS 18/19

Martina Seid|
Institute for Formal Models and Verification

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

JXU

Example: Verifiction with SMT

1/25

Expressiveness against Efficiency

B SAT: efficient, involved encodings

FO (first-order logic): often too powerful

B satisfiability with respect to some theory is required
(non-standard interpretations are not of interest)
Example: z +y<zV-o(z+1<y—>x<2)

B theory needs not be first-order axiomatizable

B specialized inference method for each theory

-

B SMT: sweetspot between SAT and FO
O propositional logic + domain specific reasoning
O in general more efficient than with general-purpose solvers with incorporated
theory axioms

JXU 2125

Satisfiability Modulo Theories (SMT)

f@)#fy)y Nz+u=3 ANv+y=3 ANu=alz] Nv=alw] A z=w

B formulas in first-order logic
O usually without quantifiers, variables implicitly existentially quantified
O but with sorted / typed symbols and
O functions / constants / predicates are interpreted
O SMT quantifier reasoning weaker than in first-order theorem proving (FO)
0 much richer language compared to propositional logic (SAT)
B many (industrial) applications
O standardized language SMTLIB used in applications and competitions

JXU 325

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x <y)
m=y;
else if (x < z)
m=y;
} else {
if (x > y)
m=y;
else if (x > z)
m = x;
}
return m;

}

JXU

This program is supposed
to return the middle

(median) of three numbers.

4/25

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
if (y <z) {
if (x < y)
m=y;
else if (x < z)
m = y;
} else {
if (x > y)
m=y;
else if (x > z)
m = x;
}
return m;

}

JXU

middle
middle
middle
middle
middle
middle
middle
middle
middle
middle
middle
middle

1,
1,
(2,
@,
@3,
1,
1,
1,
(2,
1,
(2,
(2,

Some test cases:

3)
2)
1)
2)
1)
1)
2)
1)
1)
2)
2)
1)

N NNER P P P2 NDNDNDNDN

4/25

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
it y<a)d Missed test case:
if (x < y)
m=y;
else if (x < 2) middle (2, 1, 3) =1
m=y;
} else {
if (x > y)
m=y;
else if (x > z)
m = x;
}
return m;

}

JXU 425

The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
i G2 d Missed test case:
if (x <y)
m=y;
else if (x < 2) middle (2, 1, 3) =[1
m=y;
} else {
if (x > y)
m=y;
else if (x > z) BUG !
m = x;
}
return m;

}

JXU 425

Specification for Middle

Let a be an array of size 3 indexed from 0 to 2.

/a[i]:an[j]:y/\a[k]:z N
A
al0] < a[1] Aa[1] < al2]
A
i AN ERN £k
%
‘\m:a[l] Y,

Note: coming up with this specification is a manual process

JXU

5/25

Encoding of Middle in Logic

int m = z;
if (y < 2) {
if (x <y)
n = y;
else if (x < z)
m=y;
} else {
if (x > y)
m=y;
else if (x > 2z)
m = Xx;
}

return m;

JXU 6125

Encoding of Middle in Logic

int m = z;
if (y < 2) {
if (x < y)
n = y;
else if (x < z)
m=y;
} else {
if (x > y)
m=y;
else if (x > 2z)
m = Xx;
}

return m;

JXU

/(y<z/\x<y—>m:y)
A
(y<zAhz>yAzx<z—om

>zANz<yAhz>z—=>m

\(yzz/\:rgy/\zgz%m

6/25

Encoding of Middle in Logic

int m = z;
if (y < 2) {
if (x < y)
n = y;
else if (x < z)
m=y;
} else {
if (x > y)
m=y;
else if (x > 2z)
m = Xx;
}

return m;

JXU

/(y<z/\x<y—>m:y)
A
(y<zAhz>yAzx<z—om

>zANz<yAhz>z—=>m

\(yzz/\:rgy/\zgz%m

automatic

6/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

B program is correct if “P — S” is valid

JXU 7125

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

B program is correct if “P — S” is valid
B program has a bug if “P — S” is invalid

JXU 7125

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

B program is correct if “P — S” is valid
B program has a bug if “P — S” is invalid
B program has a bug if negation of “P — 5” is satisfiable

JXU

7/25

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

B program is correct if “P — S” is valid

B program has a bug if “P — S” is invalid

B program has a bug if negation of “P — 5” is satisfiable

B program has a bug if “P A —5” is satisfiable (has a model)

JXU 7125

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification
B program has a bug if “P A -5 is satisfiable (has a model)

y<zAz<y—m=y)
y<zANz>yAhz<z—>m=y)
y<zANr>yAr>z—m=z)
y>zAr>y—m=y)
y>zAhz<yhzr>z—=>m=uz)

> > > > > >
v

(
(
(
(
(
(

y>zAhz<yAzx<z—m=z)

JXU 7125

Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

B program has a bug if “P A -5 is satisfiable (has a model)

JXU

(y<zhz<y—>m=y) A
(y<zAz>yAz<z—om=y) A
(y<zAzx>yAzx>z—m=2z) A
(y>zAx>y—>m=y) A P
(y>zAhx<yAzx>z—-m=z) A
(y>zAhz<yAz<z—-m=z) A

alil =z Naljl=yANalkl =2z A

al0] < all] Aa[l] < al2] A

iAGANIARAG £k A .

m) # |a[1] -5

7/25

Encoding with LIA in SMTLIB2

/(set-logic QF_AUFLIA)

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))

(=>(and (K y2z) Kxy)) (=my)))

(=> (and (<K yz) G=xy) (Kx2)) (=my)))

(=> (and (<K yz) O=xy) O=x2)) (=m 2)))

(=> (and (>=y z) G xy)) (=my))

(=> (and (>=y z) (k=xy) G x2)) (=mx)))

(=> (and (>=y z) (k= xy) (k= x 2)) (=m 2)))

(and (<=0 i) (<=1 2) (<=0 j) (<= j 2) (<= 0 k) (<= k 2)))
(and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(<= (select a 0) (select a 1) (select a 2)))

(distinct i j k))

(distinct m (select a 1)))

\theck—sat) (get-model) (exit)

JXU

8/25

Encoding with LIA in SMTLIB2

/(set-logic QF_AUFLIA)

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))

(=>(and (K y2z) Kxy)) (=my)))

(=> (and (<K yz) G=xy) (Kx2)) (=my)))

(=> (and (K yz) G=xy) O=x2)) (=m 2)))

(=> (and (>=y z) G xy)) (=my))

(=> (and (>=y z) (k=xy) G x2)) (=mx)))

(=> (and (>=y z) (k= xy) (k= x 2)) (=m 2)))

(and (<=0 i) (<=1 2) (<=0 j) (<= j 2) (<= 0 k) (<= k 2)))
(and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(<= (select a 0) (select a 1) (select a 2)))

(distinct i j k))

(distinct m (select a 1)))

\theck—sat) (get-model) (exit)

JXU

8/25

Encoding with LIA in SMTLIB2

(set-logic QF_AUFLIA)

(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(=> (and (K yz) (Kxy)) (=my)))

(=> (and (<K yz) G=xy) (Kx2)) (=my)))

(=> (and (<K y z) >=xy) (O=x2)) (=n 2)))

(=> (and (>=y z) G xy)) (=my))

(=> (and (>=y z) (k=xy) G x2)) (=mx)))

(=> (and (>=y z) (k= xy) (k= x 2)) (=m 2)))

(and (<=0 i) (<=1 2) (<=0 j) (<= j 2) (<= 0 k) (<= k 2)))
(and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(<= (select a 0) (select a 1) (select a 2)))

(distinct i j k))

(distinct m (select a 1)))

(check-sat) (get-model) (exit)

JXU

8/25

Encoding with LIA in SMTLIB2

(set-logic QF_AUFLIA)

(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(=>(and (K y2z) Kxy)) (=my)))

(=> (and (K yz) C=xy) (Kx2)) (=ny))

(=> (and (< yz) OG=x7y) O=x2)) (=n 2z)))

(=> (and (>=y z) G xy)) (=my))

(=> (and (>=y 2z) (k=xy) > x2)) (=mx)))

(=> (and (>=y z) (k= xy) (k= x 2)) (=m 2)))

(and (<=0 i) (<=1 2) (<=0 j) (<= j 2) (<= 0 k) (<= k 2)))
(and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(<= (select a 0) (select a 1) (select a 2)))

(distinct i j k))

(distinct m (select a 1)))

(check-sat) (get-model) (exit)

JXU

8/25

Encoding with LIA in SMTLIB2

(set-logic QF_AUFLIA)

(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(=> (and (K yz) (Kxy)) (=my)))

(=> (and (< y z2) O=xy) (Kx2)) (=ny)))

(=> (and (< y z2) O=xy) O=x2)) (=n 2)))

(=>(and G=y2) G xy)) (=myP))

(=> (and (>=y z) (k=xy) G x2)) (=mx)))

(=> (and (>=y z) (k= xy) (k= x 2)) (=m 2)))

(and (<=0 1) (<=1 2) (<=0 j) (<= j 2) (<=0 k) (<=k 2)))
(and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(<= (select a 0) (select a 1) (select a 2)))

(distinct i j k))

(distinct m (select a 1)))

(check-sat) (get-model) (exit)

JXU

8/25

Encoding with LIA in SMTLIB2

/(set-logic QF_AUFLIA)

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))

(=>(and (K y2z) Kxy)) (=my)))

(=> (and (<K yz) G=xy) (Kx2)) (=my)))

(=> (and (K yz) G=xy) O=x2)) (=m 2)))

(=> (and (>=y z) G xy)) (=my))

(=> (and (>=y z) (k=xy) G x2)) (=mx)))

(=> (and (>=y z) (k= xy) (k= x 2)) (=m 2)))

(and (<=0 i) (<=1 2) (<=0 j) (<= j 2) (<= 0 k) (<= k 2)))
(and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(<= (select a 0) (select a 1) (select a 2)))

(distinct i j k))

(distinct m (select a 1)))

\theck—sat) (get-model) (exit)

JXU

8/25

JXU

Bounded Model Checking

9/25

Model Checking

Requirements

l

Formal Specification
(Temporal Formula)

JXU

Model Checker

|

VERIFIED

Implementation

l

Model
(Kripke Structure)

10/25

Model Checking

Requirements Implementation

l |

1

Formal Specification Model
(Temporal Formula) (Kripke Structure)
0
Model Checker /'I

’
s
’
’
.
-

ERROR +
Turing Award for EI‘I’OI‘ Tl’ace

B Queille, J. P; Sifakis, J. (1982), "Specification and verification of concurrent systems in CESAR?", International Symposium on
Programming, citations: 1900

B Edmund M. Clarke, E. Allen Emerson: "Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal
Logic". Logic of Programs 1981: 52-71, citations: 3895

JXU

10/25

Types of Model Checking

General question: Given a system K and a property p, does p hold
for K (i.e., for all initial states of K) ?

B Explicit state model checking

O enumeration of the state space
O state explosion problem

B Symbolic model checking

O representation of model checking problem as logical formula (e.g., in
propositional logic (SAT) or QBF)

J¥U 11/25

Bounded Model Checking

basic idea: search for a counter-example of bounded length &

B encoding in propositional logic (or extensions)
B use SAT solvers to find such a counter-example:
formula is satisfiable iff a bug is found, i.e., an execution of program that
violates the claim.
B benefits:
O bit-precise encoding of the real semantics

O powerful SAT solvers
O difficulty of the problem is controllable (by selection of k)

B drawback: incomplete for k that is too small

=- can be used for debugging
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu (1999) Symbolic Model Checking without BDDs. TACAS 193-207,
citations: 2580

Jzu 12/25

Propositional Satisfiability (SAT)

Given propositional formula ¢. Is there a satisfying truth assignment
for ¢?

B SAT solvers are very powerful solving tools

B Using SAT as a “programming language” is very successful in many
domains

Example

Given: ¢ = (z1 V —x2) A (—z1 V z3)

Question: Is ¢ satisfiable?

Yes! For example: z1 = x3 = true, z» = false.

J!U 13/25

Symbolic System Representation

Kripke Structure: Description of the System

States:
Initial state:
Transition Relation:

Propositions:
Labeling:

Translation to SAT

Initial state:
Transition Relation:

JXU

{s1, 82,83}
{s1}
{(s1,51), (s1

)
(s2,82), (82753)
)

(83751 a(53752)}

T,y

52),

{(517 {ﬁmv ﬁy})1

(827{x7y})7

(s3, {-~z,y})},

I((z,y)) =~z A~y

T((x,y), (x

50)

((=

=((z' & zVy A
"o my) A

®
7

(' <y)V
(Y < zV-y)

14/25

Bounded Model Checking (Safety)

B Given a Kripke structure K. Is there a path of length % to a bad state s,
i.e., a certain property p is violated in s?

B In other words: there is a path where Gp does not hold in K

B Observation: if Gp does not hold in K, there is a finite
counter-example.

B |dea: consider paths of fixed length &
O encode problem to propositional formula ¢
O pass problem to SAT solver
O ¢ is true < model of ¢ is counter-example
O if ¢ is false, then increase k

Jzu 15/25

Bounded Model Checking (Safety)

A bounded model checking (BMC) problem for Kripke structure K and safety
property Gp is encoded by

I(s0) A T(SO, 81) AN T(S1,SQ) FANAAN T(sk_hsk) A /‘3(5’;,.)

where

B /(s0) is true & sg is an initial state

B 7 is the transition relation of K
B B(sy) is true < s is a bad state, i.e., —p holds in s

Jzu 16/25

Bounded Model Checking for Software

Jzu 17/25

Bounded Model Checking of ANSI-C Programs

M idea:

O unwind program into equation
O check equation using SAT/SMT

B benefits:

O completely automated

O treatment of pointers and dynamic memory is possible
B properties:

O simple assertions

O run time errors (pointers/arrays)
O run time guarantees (WCET)

for example implemented in tool CBMC

A tool for checking ANSI-C programs E Clarke, D Kroening, F Lerda Tools and Algorithms for the Construction and Analysis of Systems,
168-176, citations: 1339

Jzu 18/25

From C to SAT/SMT

B removal of side effects
example: j=i++ is rewritten to j=i; i=i+1
B control flow is made explicit
example: continue, break are replaced by goto

B transformation of loops to while (...)
B while (...) ... loops are unwound
O all loops must be bounded
— analysis may become incomplete
O constant loop bounds are found automatically, others must be specified by
user
O to ensure sufficient unwinding, “unwinding assertions” are added

Jzu 19/25

From C to SAT/SMT:

original function:

void £ (...) {

while (cond) {
body;

¥

rest;

}

Loop Unwinding

with unwounded loop:

void £ (...) {

if (cond) {
body;
if (cond) {
body;
if (cond) {
body;
assert(!cond);

after last iteration an assertion is added:
violated if program runs longer than bound permits

JXU

20/25

From C to SAT/SMT: SSA

single static assignment (SSA) form: fresh variable for LHS of each
assignment

example:

X=X +Yy;
X =X % 23
ali] = 100;

is translated to

x1 = x0 + yO;
x2 = x1 * 2;
a1[i0] = 100;

from which the following SMT formula can be derived

(1‘1 =x0 + yo) A\ (1‘2 =X * 2) A (al[io] = 100)

Jzu 21/25

From C to SAT/SMT: Conditionals

B for each join point, new variables with selectors are added

B example:
original program: rewritten program:
if (v) if (v0)
x=y; %0 = yO0;
= Y-
w = X; x2 =v0 ? x0 : x1;
wl = x2;

J z U 22/25

From C to SAT/SMT: Example

int main () { int main () {
int x, y; int x, y;
y=1; yl=1;
if (%) if (x0)
y-3 y2 = yi-1;
else else
yt+; = y3 = yi+i; =
assert y4 = x0 ? y2 : y3;

(y==2 || y==3);
assert
(y4==2 || y4==3);

(n=DA@=p1—-)A(ys=y1+1)A(ys = 207y2 : y3))

= ((ya=2)V (y4 = 3))

J ! U 23/25

Arrays

B functions “read” and “write”: read(a, i), write(a, i, v)
B axioms

array congruence
Ya,i,5:1=j — read(a,i) = read(a, j)

read over write 1
Ya,v,i,7: 1= j — read(write(a,i,v),j) =v

read over write 2
Ya,v,i,7: 1 # j — read(write(a, i,v),j) = read(a, j)

B used to model memory (HW and SW)

J z U 24/25

Array to EUF Example

B eagerly reduce arrays to uninterpreted functions:

read(write(a,i,v),j) replacedby (i=3j ? v:read(a,j))

J z U 25/25

Array to EUF Example

B eagerly reduce arrays to uninterpreted functions:
read(write(a,i,v),j) replacedby (i=3j ? v:read(a,j))
B Example:

1 #j N u=read(write(a,i,v),j) A v=read(a,j) N u#v

J z U 25/25

Array to EUF Example

B eagerly reduce arrays to uninterpreted functions:
read(write(a,i,v),j) replacedby (i=3j ? v:read(a,j))
B Example:
1 #j N u=read(write(a,i,v),j) A v=read(a,j) N u#v

i1#j ANu= (=7 7 v:read(a,j)) N v=read(a,j) N uF#v

JXU

25/25

Array to EUF Example

B eagerly reduce arrays to uninterpreted functions:
read(write(a,i,v),j) replacedby (i=3j ? v:read(a,j))
B Example:
1 #j N u=read(write(a,i,v),j) A v=read(a,j) N u#v

i1#j ANu= (=7 7 v:read(a,j)) N v=read(a,j) N uF#v

i1#j AN u=read(a,j) N v=read(a,j) AN u#v

JXU

25/25

Array to EUF Example

B eagerly reduce arrays to uninterpreted functions:
read(write(a,i,v),j) replacedby (i=3j ? v:read(a,j))
B Example:
1 #j N u=read(write(a,i,v),j) A v=read(a,j) N u#v
i#j ANu=(i=j5 7 v:read(a,j)) A v=read(a,j) N u#wv

i1#j AN u=read(a,j) N v=read(a,j) AN u#v

i1#j N u=read(a,j)=read(a,j) =v AN u#wv

JXU

25/25

Array to EUF Example

B eagerly reduce arrays to uninterpreted functions:
read(write(a,i,v),j) replacedby (i=3j ? v:read(a,j))
B Example:
1 #j N u=read(write(a,i,v),j) A v=read(a,j) N u#v

i1#j ANu= (=7 7 v:read(a,j)) N v=read(a,j) N uF#v
i1#j AN u=read(a,j) N v=read(a,j) AN u#v

i1#j N u=read(a,j)=read(a,j) =v AN u#wv
UNSATISFIABLE

JXU

25/25

