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Expressiveness against Efficiency

B SAT: efficient, involved encodings

FO (first-order logic): often too powerful

B satisfiability with respect to some theory is required
(non-standard interpretations are not of interest)
Example: z +y<zV-o(z+1<y—>x<2)

B theory needs not be first-order axiomatizable

B specialized inference method for each theory

-

B SMT: sweetspot between SAT and FO
O propositional logic + domain specific reasoning
O in general more efficient than with general-purpose solvers with incorporated
theory axioms
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Satisfiability Modulo Theories (SMT)

f@)#fy)y Nz+u=3 ANv+y=3 ANu=alz] Nv=alw] A z=w

B formulas in first-order logic
O usually without quantifiers, variables implicitly existentially quantified
O but with sorted / typed symbols and
O functions / constants / predicates are interpreted
O SMT quantifier reasoning weaker than in first-order theorem proving (FO)
0 much richer language compared to propositional logic (SAT)
B many (industrial) applications
O standardized language SMTLIB used in applications and competitions

JXU 325



The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x <y)
m=y;
else if (x < z)
m=y;
} else {
if (x > y)
m=y;
else if (x > z)
m = x;
}
return m;

}
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This program is supposed
to return the middle

(median) of three numbers.
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The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
it y<a)d Missed test case:
if (x < y)
m=y;
else if (x < 2) middle (2, 1, 3) =1
m=y;
} else {
if (x > y)
m=y;
else if (x > z)
m = x;
}
return m;

}
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The Program “Middle”

int middle (int x, int y, int z) {
int m = z;
i G2 d Missed test case:
if (x <y)
m=y;
else if (x < 2) middle (2, 1, 3) =[1
m=y;
} else {
if (x > y)
m=y;
else if (x > z) BUG !
m = x;
}
return m;

}
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Specification for Middle

Let a be an array of size 3 indexed from 0 to 2.

/a[i]:an[j]:y/\a[k]:z N
A
al0] < a[1] Aa[1] < al2]
A
i AN ERN £k
%
‘\m:a[l] Y,

Note: coming up with this specification is a manual process
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Encoding of Middle in Logic

int m = z;
if (y < 2) {
if (x <y)
n = y;
else if (x < z)
m=y;
} else {
if (x > y)
m=y;
else if (x > 2z)
m = Xx;
}

return m;
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Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

B program is correct if “P — S” is valid
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Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification
B program has a bug if “P A -5 is satisfiable (has a model)
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Checking Specification as SMT Problem

Let P be the encoding of the program, and S of the specification

B program has a bug if “P A -5 is satisfiable (has a model)
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Encoding with LIA in SMTLIB2

/(set-logic QF_AUFLIA)

(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert
(assert

(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int)
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun m () Int) (declare-fun a () (Array Int Int))

(=>(and (K y2z) Kxy)) (=my)))

(=> (and (<K yz) G=xy) (Kx2)) (=my)))

(=> (and (<K yz) O=xy) O=x2)) (=m 2)))

(=> (and (>=y z) G xy)) (=my))

(=> (and (>=y z) (k=xy) G x2)) (=mx)))

(=> (and (>=y z) (k= xy) (k= x 2)) (=m 2)))

(and (<=0 i) (<=1 2) (<=0 j) (<= j 2) (<= 0 k) (<= k 2)))
(and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(<= (select a 0) (select a 1) (select a 2)))

(distinct i j k))

(distinct m (select a 1)))

\theck—sat) (get-model) (exit)
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Bounded Model Checking
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Model Checking

Requirements

l

Formal Specification
(Temporal Formula)
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Model Checker

|

VERIFIED

Implementation

l

Model
(Kripke Structure)
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Model Checking

Requirements Implementation

l |

1

Formal Specification Model
(Temporal Formula) (Kripke Structure)
0
Model Checker /'I

’
s
’
’
.
-

ERROR +
Turing Award for EI‘I’OI‘ Tl’ace

B Queille, J. P; Sifakis, J. (1982), "Specification and verification of concurrent systems in CESAR?", International Symposium on
Programming, citations: 1900

B Edmund M. Clarke, E. Allen Emerson: "Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal
Logic". Logic of Programs 1981: 52-71, citations: 3895
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Types of Model Checking

General question: Given a system K and a property p, does p hold
for K (i.e., for all initial states of K) ?

B Explicit state model checking

O enumeration of the state space
O state explosion problem

B Symbolic model checking

O representation of model checking problem as logical formula (e.g., in
propositional logic (SAT) or QBF)
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Bounded Model Checking

basic idea: search for a counter-example of bounded length &

B encoding in propositional logic (or extensions)
B use SAT solvers to find such a counter-example:
formula is satisfiable iff a bug is found, i.e., an execution of program that
violates the claim.
B benefits:
O bit-precise encoding of the real semantics

O powerful SAT solvers
O difficulty of the problem is controllable (by selection of k)

B drawback: incomplete for k that is too small

=- can be used for debugging
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu (1999) Symbolic Model Checking without BDDs. TACAS 193-207,
citations: 2580
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Propositional Satisfiability (SAT)

Given propositional formula ¢. Is there a satisfying truth assignment
for ¢?

B SAT solvers are very powerful solving tools

B Using SAT as a “programming language” is very successful in many
domains

Example

Given: ¢ = (z1 V —x2) A (—z1 V z3)

Question: Is ¢ satisfiable?

Yes! For example: z1 = x3 = true, z» = false.
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Symbolic System Representation

Kripke Structure: Description of the System

States:
Initial state:
Transition Relation:

Propositions:
Labeling:

Translation to SAT

Initial state:
Transition Relation:

JXU

{s1, 82,83}
{s1}
{(s1,51), (s1

)
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)
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=((z' & zVy A
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®
7

(' <y)V
(Y < zV-y)
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Bounded Model Checking (Safety)

B Given a Kripke structure K. Is there a path of length % to a bad state s,
i.e., a certain property p is violated in s?

B In other words: there is a path where Gp does not hold in K

B Observation: if Gp does not hold in K, there is a finite
counter-example.

B |dea: consider paths of fixed length &
O encode problem to propositional formula ¢
O pass problem to SAT solver
O ¢ is true < model of ¢ is counter-example
O if ¢ is false, then increase k
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Bounded Model Checking (Safety)

A bounded model checking (BMC) problem for Kripke structure K and safety
property Gp is encoded by

I(s0) A T(SO, 81) AN T(S1,SQ) FANAAN T(sk_hsk) A /‘3(5’;,.)

where

B /(s0) is true & sg is an initial state

B 7 is the transition relation of K
B B(sy) is true < s is a bad state, i.e., —p holds in s
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Bounded Model Checking for Software
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Bounded Model Checking of ANSI-C Programs

M idea:

O unwind program into equation
O check equation using SAT/SMT

B benefits:

O completely automated

O treatment of pointers and dynamic memory is possible
B properties:

O simple assertions

O run time errors (pointers/arrays)
O run time guarantees (WCET)

for example implemented in tool CBMC

A tool for checking ANSI-C programs E Clarke, D Kroening, F Lerda Tools and Algorithms for the Construction and Analysis of Systems,
168-176, citations: 1339
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From C to SAT/SMT

B removal of side effects
example: j=i++ is rewritten to j=i; i=i+1
B control flow is made explicit
example: continue, break are replaced by goto

B transformation of loops to while (...)
B while (...) ... loops are unwound
O all loops must be bounded
— analysis may become incomplete
O constant loop bounds are found automatically, others must be specified by
user
O to ensure sufficient unwinding, “unwinding assertions” are added
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From C to SAT/SMT:

original function:

void £ (...) {

while (cond) {
body;

¥

rest;

}

Loop Unwinding

with unwounded loop:

void £ (...) {

if (cond) {
body;
if (cond) {
body;
if (cond) {
body;
assert(!cond);

after last iteration an assertion is added:
violated if program runs longer than bound permits

JXU
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From C to SAT/SMT: SSA

single static assignment (SSA) form: fresh variable for LHS of each
assignment

example:

X=X +Yy;
X =X % 23
ali] = 100;

is translated to

x1 = x0 + yO;
x2 = x1 * 2;
a1[i0] = 100;

from which the following SMT formula can be derived

(1‘1 =x0 + yo) A\ (1‘2 =X * 2) A (al[io] = 100)
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From C to SAT/SMT: Conditionals

B for each join point, new variables with selectors are added

B example:
original program: rewritten program:
if (v) if (v0)
x=y; %0 = yO0;
= Y-
w = X; x2 =v0 ? x0 : x1;
wl = x2;
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From C to SAT/SMT: Example

int main () { int main () {
int x, y; int x, y;
y=1; yl=1;
if (%) if (x0)
y-3 y2 = yi-1;
else else
yt+; = y3 = yi+i; =
assert y4 = x0 ? y2 : y3;

(y==2 || y==3);
assert
(y4==2 || y4==3);

(n=DA@=p1—-)A(ys=y1+1)A(ys = 207y2 : y3))

= ((ya=2)V (y4 = 3))
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Arrays

B functions “read” and “write”:  read(a, i), write(a, i, v)
B axioms

array congruence
Ya,i,5:1=j — read(a,i) = read(a, j)

read over write 1
Ya,v,i,7: 1= j — read(write(a,i,v),j) =v

read over write 2
Ya,v,i,7: 1 # j — read(write(a, i,v),j) = read(a, j)

B used to model memory (HW and SW)
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Array to EUF Example

B eagerly reduce arrays to uninterpreted functions:

read(write(a,i,v),j) replacedby (i=3j ? v:read(a,j))
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