
SEPARATION LOGICN
KV Software Verification WS 18/19

Martina Seidl
Institute for Formal Models and Verification



The Classics: Hoare Calculus

Hoare, Charles Antony Richard. "An axiomatic basis for computer programming."
Communications of the ACM 12.10 (1969): 576-580, citations: 7923

1/26



Hoare Triple

{F } P {G}
precondition program postcondiction

Informal meaning of a Hoare Triple:

If program is run in a state that satisfies F , then the state that results from P’s
execution will satisfy G.

Questions

� How to specify program P?

� How to specify conditions F , G?

� How to do the reasoning?

2/26



Hoare Triple

{F } P {G}
precondition program postcondiction

Informal meaning of a Hoare Triple:

If program is run in a state that satisfies F , then the state that results from P’s
execution will satisfy G.

Questions

� How to specify program P?

� How to specify conditions F , G?

� How to do the reasoning?

2/26



Hoare Triple

{F } P {G}
precondition program postcondiction

Informal meaning of a Hoare Triple:

If program is run in a state that satisfies F , then the state that results from P’s
execution will satisfy G.

Questions

� How to specify program P?

� How to specify conditions F , G?

� How to do the reasoning?

2/26



The Simple Programming Language WHILE

P ::= skip no operation
| P1;P2 sequential composition
| V := E assignment
| if B then P1 else P2 branching
| while B do P loop

where

� E is an arithmetical expression

� B is a Boolean expression

3/26



Example: Swap

Consider the following simple program

T := X;X := Y ;Y := T

that is supposed to exchange the values of variables X and Y .

To show:

{X = vX ∧ Y = vY } T := X;X := Y ;Y := T {X = vY ∧ Y = vX}

4/26



Programs as State Transformations

5/26



Program States: “Memory Snapshots”

Program state
mapping σ : Var→ Z of variables from set of variables Var to values (integer)

Set of all states
S = {σ | σ : Var→ Z}

Example

A possible state of variables Var = {x, y, z} is σ(x) = 1, σ(y) = 2, σ(z) = 3

Configuration

� pair (P, σ) with P ∈ prog and σ ∈ S

� state σ ∈ S (final configuration)

Set of all configurations
Configs = (P × S) ∪ S

6/26



Semantics of Expressions

for assignments, expressions E have to be evaluated. Therefore, we define
the function J−K : Exp× S → Z as follows:

JV Kσ = σ(V )
JnKσ = n ∈ Z

JE1 + E2Kσ = JE1Kσ + JE2Kσ

. . .

for loop- and if-statements, Boolean expressions have to be evaluated.
Therefore, we define the function J−K : BExp× S → B as follows:

J>Kσ = true

J⊥Kσ = false

JE1 == E2Kσ = JE1Kσ == JE2Kσ

JB1 ∧B2Kσ = JB1Kσ ∧ JB2Kσ

. . .

7/26



Program Semantics

The small-step semantics of programs is defined by the relation
; : Configs× Configs which is defined as follows:

(skip, σ) ; σ

(P1;P2, σ) ;

{
(P ′1;P2, σ′) if (P1, σ) ; (P ′1, σ′)

(P2, σ
′) if (P1, σ) ; σ′

V := E ; σ′ with
σ′(V ) = JEKσ

σ′(X) = σ(X) for X 6= V

if B then P1 else P2 ;

{
(P1, σ) if JBKσ is true

(P2, σ) otherwise

while B do P ;

{
(P ; while B do P, σ) if JBKσ is true

σ otherwise

Function J−K : Prog× S → S describes the computation performed by a
program P starting in state σ as follows:

JP Kσ = σ′ iff (P, σ) ;∗ σ′
8/26



Specification of the Conditions

� formulas in first-order logic (FO) with usual syntax and semantics

� σ ` F means: F holds in state σ

� {F} = {σ | σ ` F}

Correctness Assertions:
{F} P {G}

holds iff for all states σ ∈ S, if

1. σ ` F

2. (P, σ) ;∗ σ′

then σ′ ` G

9/26



Hoare Calculus: Rule Schemas

Inference rule:

S1 . . . Sn

S

S can be derived from assumptions S1, . . . , Sn

Axiom rule:

S

Inference rule without any assumption.

Proof tree of S:

Derivation with S in the root and only axioms in the leaves.

10/26



Rules of the Hoare Calculus

{F} skip {F} {F [E/V ]} V := E {F}

{F} P1 {H} {H} P2{G}
{F} P1;P2{G}

{F ∧B} P1 {G} {F ∧ ¬B} P2{G}
{F} if B then P1 else P2 {G}

{F ∧B} P{F}
{F} while B do P {F ∧ ¬B}

11/26



Rules of the Hoare Calculus

` F → F ′ {F ′} P {G′} ` G′ → G

{F} P {G}

{F1} P {G} {F2} P{G}
{F1 ∨ F2} P {G}

{F} P {G1} {F} P{G2}
{F} P {G1 ∧G2}

12/26



Separation Logic

Reynolds, John C. "Separation logic: A logic for shared mutable data structures." Logic
in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on. IEEE,
2002, citations: 2317

O’Hearn, Peter, John Reynolds, and Hongseok Yang. "Local reasoning about programs
that alter data structures." International Workshop on Computer Science Logic.
Springer, Berlin, Heidelberg, 2001, citations: 758

13/26



Extension of WHILE Language

We consider an extension of WHILE with pointers, memory allocation, and
memory deallocation

P ::= skip no operation
| P1;P2 sequential composition
| V := E assignment
| if B then P1 else P2 branching
| while B do P loop
| V := cons(E1, . . . , En) allocation
| free(E) deallocation
| V := [E] dereferencing
| [E] := E heap assignment

Remarks:

� reading, writing, and disposing pointers can fail if not allocated properly

� allocation never fails

14/26



Heap Memory Model

program state

� stack :
mapping s : Var→ Z of variables from set of variables Var to values
(integers)

� heap:
mapping h : Addr→ Z of addresses (finite subset of N) to values
⇒ arithmetic with addresses is possible

set of all states

S = {(s, h) | s is stack, h is heap}

15/26



Program Semantics by ExampleSemantics of the programming language

Cristina SERBAN An Introduction to Separation Logic December 10, 2014 13 / 41

Examples by Cristina Serban, http://www-verimag.imag.fr/~serban/

16/26

http://www-verimag.imag.fr/~serban/


Problem with the Hoare Calculus

In the classical Hoare Calculus the following rules holds

{E1}P{E2}
{E1 ∧ E}P{E2 ∧ E}

if no free variable occurring in E is modified by P.

This rule does not with pointers:

{X 7→ 0}[X] := 2{X 7→ 2}
{X 7→ 0 ∧ Y 7→ 0}[X] := 2{X 7→ 2 ∧ Y 7→ 0}

17/26



Semantics of the Extended WHILE Language

Now ; : Configs× Configs is defined as follows:

(V := cons(E1, . . . , En), (s, h)) ; (s′, h′) with

s′(V ) = α1 αi ∈ Addr1

s′(X) = s(X) X 6= V

h′(αi) = JEiKs
h′(β) = h(β) β 6= αi

(free(E), (s, h)) ; (s, h|dom(h)\{JEKs}) if

(V := [E], (s, h)) ; (s′, h) with
s′(V ) = h(JEKs)

s′(X) = s(X) for X 6= V

([E] := E′, (s, h)) ; (s, h′) with
h′(JEKs) = JE′Ks

h′(α) = h(α) β 6= JEKs

The last three rules are only applicable if JEKs ∈ dom(h).
1αi are n new addresses

18/26



Heap Assertions

� emp
The heap is empty.

� E 7→ E′

The cell in the heap with address E contains content E′.

� P1 ∗ P2 (separating conjunction)
The heap consists of two disjoint parts such that in one part P1 holds
and in the other part P2 holds.

Examples

� X 7→ 1 ∗X 7→ 1 is unsatisfiable.

� X 7→ 1 ∗ Y 7→ 1 is unsatisfiable in a state in which X and Y refer to the
same location.

� X 7→ E1 ∧ Y 7→ E2 asserts that E1 = E2.

19/26



Example of Sharing PatternsSharing patterns
1 x 7! 3,y

2 y 7! 3,x

3 x 7! 3,y ⇤ y 7! 3,x

4 x 7! 3,y ^ y 7! 3,x

5 x ,! 3,y ^ y ,! 3,x
Either (3) or (4) may hold and the heap may contain additional cells.

Cristina SERBAN An Introduction to Separation Logic December 10, 2014 17 / 41

Examples by Cristina Serban, http://www-verimag.imag.fr/~serban/

20/26

http://www-verimag.imag.fr/~serban/


Semantics of Heap Assertions

Let s be a stack, h, be a heap and P an assertion. We define that P is true in
(s, h) (written as s, h ` P ) if the following holds:

s, h ` emp iff dom(h) = {}

s, h ` E 7→ E′ iff dom(h) = {JEKs}

h(JEKs) = JE′Ks

s, h ` P1 ∗ P2 iff ∃h1, h2 : dom(h1) ∩ dom(h2) = ∅, h1 ∪ h2 = h,

s, h1 ` P1,

s, h2 ` P2

s, h ` B iff JBKs where B is a pure formula

21/26



Hoare Triples for Separation Logic

A hoare triple {F}P{G} holds iff for all configurations (s, h) with s, h ` F

1. (P, (s, h)) 6;∗ error

2. ∀(s′, h′) with (P, (s, h)) ;∗ (s′, h′) : (s′, h′) ` G

Example

triple holds

{V 7→ −}[V ] := 0{V 7→ 0} 3

{V 7→ −}[V ] := 1{V 7→ 0} 7

{}[V ] := 0{V 7→ 0} 7

where E 7→ − means ∃E′ : E 7→ E′

22/26



Inference Rules: Axioms

{E 7→ −} free(E) {emp}

{(E 7→ −) ∗R} free(E) {R}

{emp} V := cons(E) {V 7→ E}

{R} V := cons(E) {V 7→ E ∗R}

{E 7→ −} [E] := E′ {E 7→ E′}

{(E 7→ −) ∗R} [E] := E′ {E 7→ E′ ∗R}

{(E 7→ E′) ∗R} X := [E] {X = E′ ∧ E 7→ E′ ∗R} X 6∈ E,E′, R

{(E 7→ E′) ∧X = x} X := [E] {X = E′ ∧ E[x/X] 7→ E′}

where E 7→ − means ∃E′ : E 7→ E′

23/26



Frame Rule

{E1}P{E2}
{E1 ∗ E}P{E2 ∗ E}

where for all free variables X of E: X 6∈ mod(P ) and mod(P ) is defined as
follows

mod(skip) = ∅
mod(V := E) = {V }
mod(P1;P2) = mod(P1) ∪mod(P2)
mod(if B then P1 else P2) = mod(P1) ∪mod(P2)
mod(while B do P ) = mod(P )

24/26



Outlook: Inductive Data Structures & Recursion

definition of tree(x) with root pointer x:

x = nil : emp ⇒ tree(x)

x 6= nil : x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

deltree(∗x) {
if x == nil then return;
else {
l, r := x.left, x.right;
deltree(l);
deltree(r);
free(x);
}
}

Example by James Brotherston, http://www0.cs.ucl.ac.uk/staff/J.Brotherston/

25/26

http://www0.cs.ucl.ac.uk/staff/J.Brotherston/


Outlook: Deletion of a Tree

{tree(x)}
deltree(∗x) {

if x == nil then return;
{eheap}

else {
{x 7→ (y, z) ∗ tree(y) ∗ tree(z)}}

l, r := x.left, x.right;
{x 7→ (y, z) ∗ tree(l) ∗ tree(r)}

deltree(l);
{x 7→ (y, z) ∗ emp ∗ tree(r)}

deltree(r);
{x 7→ (y, z) ∗ emp ∗ emp}

free(x);
{emp ∗ emp ∗ emp}
}
{emp}
}
{emp} 26/26


