SEPARATION LOGICN
KV Software Verification WS 18/19

Martina Seid|
Institute for Formal Models and Verification

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

The Classics: Hoare Calculus

Hoare, Charles Antony Richard. "An axiomatic basis for computer programming."
Communications of the ACM 12.10 (1969): 576-580, citations: 7923

JXU 1126

Hoare Triple

PG

precondition program postcondiction

JXU 2126

Hoare Triple

F} P {G

precondition program postcondiction

Informal meaning of a Hoare Triple:

If program is run in a state that satisfies F', then the state that results from P’s
execution will satisfy G.

JXU 2126

Hoare Triple

F} P {G

precondition program postcondiction

Informal meaning of a Hoare Triple:

If program is run in a state that satisfies F', then the state that results from P’s
execution will satisfy G.

Questions

B How to specify program P?
B How to specify conditions F, G?
B How to do the reasoning?

JXU 2126

The Simple Programming Language WHILE

P = skip no operation
| Py; Py sequential composition
| V:i=F assignment
| if Bthen P, else P, branching
| while Bdo P loop

where

B F is an arithmetical expression
B B is a Boolean expression

JXU 326

Example: Swap

Consider the following simple program
T=X;X:=Y;Y:=T

that is supposed to exchange the values of variables X and Y.

To show:

{X=uvx ANY =w}T:=X; X =Y;Y :=T{X =vy ANY =vx}

JXU w26

Programs as State Transformations

JXU 5126

Program States: “Memory Snapshots”

Program state
mapping o: Var — Z of variables from set of variables Var to values (integer)

Set of all states
S={o|o:Var—Z}

Example

A possible state of variables Var = {z,y,z} iso(z) = 1,0(y) = 2,0(2) =3

Configuration

W pair (P,o) with P € progand o € S
B state o € S (final configuration)

Set of all configurations
Configs = (P x S)U S

JXU 6126

Semantics of Expressions

for assignments, expressions E have to be evaluated. Therefore, we define

the function [—]: Exp x S — Z as follows:

Vie = o(V)
[n]o = nez
[[E1 + EQ]]O’ = [[ElﬂO' + HEQHU

for loop- and if-statements, Boolean expressions have to be evaluated.

Therefore, we define the function [—]: BExp x S — B as follows:

[Tle = true

[L]o = false

[[El == EQ]]U = [[Elﬂd == HEQHU
[[Bl AN BQ]]O' = [[Bﬂ]a A [[Bz]]o‘

JXU

7/26

Program Semantics

The small-step semantics of programs is defined by the relation
~: Configs x Configs which is defined as follows:

(skip, o) ~ o
(Pr: Py.o) - (P{; P2,¢") if (P1,0)~ (P{,0)
1; P,
(P, 0") if (P1,0)~ o’
V=E o orwith C V)= Bl

d(X)= o(X)forX £V

. Py,0) if [B]ois true

if Bthen P, else P, ~ .
(P2,0) otherwise

P;while Bdo P,o) if[B]oistrue

while B do P ~ .
o otherwise

Function [—]: Prog x S — S describes the computation performed by a

program P starting in state o as follows:

JYYU [P]o = o' iff (P,0) ~* o 6126

Specification of the Conditions

B formulas in first-order logic (FO) with usual syntax and semantics
B o - F means: F holds in state o
B {F}={o|ok F}

Correctness Assertions:
{F} P{G}

holds iff for all states o € S, if

1. o F
2. (Po)~"d

theno’ - G

JXU

9/26

Hoare Calculus: Rule Schemas

Inference rule:

S1 Sh
S

S can be derived from assumptions 54, ..., S,

Axiom rule:

Inference rule without any assumption.

Proof tree of S:

Derivation with S in the root and only axioms in the leaves.

Jzu 10/26

Rules of the Hoare Calculus

{F} skip {F} {FIE/V]} V:=E{F}

{F} P, {H} {H} P{G}
{F} Pi; PG}

{F A B} P, {G} {F A —-B} P{G}
{F}if B then P, else P, {G}

{F AN B} P{F}
{F} while Bdo P {F AN -B}

Jzu 11/26

Rules of the Hoare Calculus

FFF {F}YP{G} FG =G
{F} P{G}

{} PG} {F2} P{G}
{F1v P} P{G}

{F} P{G1} {F} P{G2}
{F} P {G1 N G2}

Jzu 12/26

Separation Logic

Reynolds, John C. "Separation logic: A logic for shared mutable data structures." Logic
in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on. IEEE,
2002, citations: 2317

O’Hearn, Peter, John Reynolds, and Hongseok Yang. "Local reasoning about programs
that alter data structures." International Workshop on Computer Science Logic.
Springer, Berlin, Heidelberg, 2001, citations: 758

Jzu 13/26

Extension of WHILE Language

We consider an extension of WHILE with pointers, memory allocation, and
memory deallocation

P = skip no operation
| Pi; P sequential composition
| V:i=F assignment
| if Bthen P, else P, branching
| while Bdo P loop
| V:=cons(Ey,...,E,) allocation
| free(E) deallocation
| V.:=[F] dereferencing
| [E]:= heap assignment
Remarks:

B reading, writing, and disposing pointers can fail if not allocated properly
W allocation never fails

J!U 14/26

Heap Memory Model

program state

B sfack:
mapping s: Var — Z of variables from set of variables Var to values
(integers)

B heap:
mapping h: Addr — Z of addresses (finite subset of N) to values
= arithmetic with addresses is possible

set of all states

S ={(s, h) | sis stack, h is heap}

Jzu 15/26

Program Semantics by Example

x
w
N

137

x

JXU

X 1

= cons(1,2)
4 X 37 37 38
va 12
y = [x]
x-37 37 | 38
v 2]
[x+1] := 3
X :37 37 38
v]3]

dispose(x+1)
x:37 >
alG

Examples by Cristina Serban, http://www-verimag.imag.fr/~serban/

16/26

http://www-verimag.imag.fr/~serban/

Problem with the Hoare Calculus

In the classical Hoare Calculus the following rules holds

{E1}P{E2}
(Ex AEYP{Es A E}

if no free variable occurring in E' is modified by P.

This rule does not with pointers:

{X = 0}[X] == 2{X — 2}

{X = 0AY - 0}[X]:=2{X —»2AY — 0}

JXU

17/26

Semantics of the Extended WHILE Language

Now ~: Configs x Configs is defined as follows:

SV)= a1 a; € Addr!
(V i= cons(Eu,..., En), (s,h)) ~ (5,1 with;,((jgz E%)S XAV
W(B)= h(B) B # a;
(free(E), (s, h)) ~ (s, h|dom(h)\{[E]s}) if
(V = [E], (s, h)) ~ (s, h) with S(V)= h(lEs)

s'(X) = s(X)for X #V

. W([E]s) = [Es
E Z:Ely S7h ~ S7h/ th
([E] (s,h)) (s YW= ha) B [E]s

The last three rules are only applicable if [E]s € dom(h).

'a; are n new addresses

Jzu 18/26

Heap Assertions

B emp
The heap is empty.

B E—E
The cell in the heap with address E contains content E’.

B P, x P> (separating conjunction)
The heap consists of two disjoint parts such that in one part P, holds
and in the other part P holds.

Examples

B X — 1xX — 1is unsatisfiable.

B X — 1Y — 1is unsatisfiable in a state in which X and Y refer to the
same location.

B X — Ey ANY — E> asserts that £, = Es.

Jzu 19/26

Example of Sharing Patterns

X — 3y
X:a a |a+1 X_>i
v
y — 3,x
X:a b |b+1 y%i
B
X+ 3y *xy > 3x
x={3] v
vy S 5 [
X+ 3y Ay 3x
X
3
X:a a |a+l
<) B ~E

Examples by Cristina Serban, http://wwu-verimag.imag.fr/~serban/

J z U 20/26

http://www-verimag.imag.fr/~serban/

Semantics of Heap Assertions

Let s be a stack, h, be a heap and P an assertion. We define that P is true in
(s, h) (written as s, h = P) if the following holds:

s,h - emp iff dom(h) ={}

s,h= Ew E iff dom(h) = {[E]s}
h(IEs) = [E']s

s,h = Py x P, iff Jh1, ha : dom(hi) Ndom(he) =0, h1 Uho = h,
s,h1 F P,
s,ha - P

s,h+ B iff [B]s where B is a pure formula

Jzu 21/26

Hoare Triples for Separation Logic

A hoare triple { '} P{G?} holds iff for all configurations (s, h) with s,h - F'

1. (P, (s, h)) 4" error
2. V(s', ') with (P, (s,h)) ~* (s',h'): (s',h) -G

Example

triple \ holds
{Ve=—-}[V]=0{V~0} |/
{Ve =}Vl ={V~—0} | X
{}[V] :=0{V — 0} X

where £ — —means 3E' : E — E’

JXU

22/26

Inference Rules: Axioms

{E— -} free(E) {emp}
{(E~ —-)*R} free(E) {R}
{emp} V := cons(E) {V— E}
{R} V :=cons(FE) {V— E xR}
{E— -} [E]:=E' {E— E}
{(E— —)*R} [E] :=F {E~ E' xR}
{(E ~ E') * R} X :=[E (X=E'ANE—E'«xR} X¢EFE R

(Ew EYANX =12} X:=[E] {X=FE AE[z/X]— E'}

where E — —means 3E' : E — E’

J z U 23/26

Frame Rule

{E1}P{E2}

where for all free variables X of E: X ¢ mod(P) and mod(P) is defined as
follows

mod(skip) = 0

mod(V := E) = {V}

mod(Py; Ps) = mod(P1)Umod(P:)
mod(if B then P, else P,) = mod(P1)Umod(Pz)
mod(while B do P) = mod(P)

J z U 24/26

Outlook: Inductive Data Structures & Recursion

definition of ¢ree(z) with root pointer x:
x=ni emp = tree(x)

r#mnil 1 xw— (y,z)xtree(y) xtree(z) = tree(x)

deltree(xx) {
if x == nil then return;
else {
l,r = z.left, x.right;
deltree(l);
deltree(r);
free(z);
}
}

Example by James Brotherston, http://www0.cs.ucl.ac.uk/staff/J.Brotherston/

J z U 25/26

http://www0.cs.ucl.ac.uk/staff/J.Brotherston/

Outlook: Deletion of a Tree

JXU

{tree(x)}
deltree(xx) {
if x == nil then return;
{eheap}
else {
{z — (y,2) xtree(y) x tree(z)} }
l,r .= x.left, x.right,
{z— (y, z) * tree(l) = tree(r)}
deltree(!);
{z— (y,z) «emp x tree(r)}
deltree(r);
{z — (y,z) xemp xemp}
free(z);
{emp x emp x emp}
}
{emp}
}
{emp}

26/26

