SEPARATION LOGICN

KV Software Verification WS 18/19

Martina Seidl Institute for Formal Models and Verification

The Classics: Hoare Calculus

Hoare, Charles Antony Richard. "An axiomatic basis for computer programming." Communications of the ACM 12.10 (1969): 576-580, citations: 7923

Hoare Triple

$\{F\} \mathsf{P} \{G\}$

Hoare Triple

Informal meaning of a Hoare Triple:

If program is run in a state that satisfies F, then the state that results from P's execution will satisfy G.

Hoare Triple

Informal meaning of a Hoare Triple:

If program is run in a state that satisfies F, then the state that results from P's execution will satisfy G.

Questions

- How to specify program P?
- $\blacksquare How to specify conditions F, G?$
- How to do the reasoning?

The Simple Programming Language WHILE

where

- \blacksquare E is an arithmetical expression
- *B* is a Boolean expression

Consider the following simple program

$$T := X; X := Y; Y := T$$

that is supposed to exchange the values of variables X and Y.

To show:

$$\{X = v_X \land Y = v_Y\} T := X; X := Y; Y := T \{X = v_Y \land Y = v_X\}$$

Programs as State Transformations

Program States: "Memory Snapshots"

Program state

mapping σ : Var $\rightarrow \mathbb{Z}$ of variables from set of variables Var to values (integer)

Set of all states

 $S = \{ \sigma \mid \sigma \colon \mathsf{Var} \to \mathbb{Z} \}$

Example

A possible state of variables $Var = \{x, y, z\}$ is $\sigma(x) = 1, \sigma(y) = 2, \sigma(z) = 3$

Configuration

a pair (P, σ) with $P \in prog$ and $\sigma \in S$

state $\sigma \in S$ (final configuration)

Set of all configurations

 $\mathsf{Configs} = (P \times S) \cup S$

Semantics of Expressions

. . .

for assignments, expressions E have to be evaluated. Therefore, we define the function $[-]: Exp \times S \to \mathbb{Z}$ as follows:

$$\llbracket V \rrbracket \sigma = \sigma(V)$$

$$\llbracket n \rrbracket \sigma = n \in \mathbb{Z}$$

$$\llbracket E_1 + E_2 \rrbracket \sigma = \llbracket E_1 \rrbracket \sigma + \llbracket E_2 \rrbracket \sigma$$

for loop- and if-statements, Boolean expressions have to be evaluated. Therefore, we define the function $[-]: BExp \times S \to \mathbb{B}$ as follows:

$$\begin{split} \llbracket \top \rrbracket \sigma &= \text{ true} \\ \llbracket \bot \rrbracket \sigma &= \text{ false} \\ \llbracket E_1 == E_2 \rrbracket \sigma &= \llbracket E_1 \rrbracket \sigma == \llbracket E_2 \rrbracket \sigma \\ \llbracket B_1 \wedge B_2 \rrbracket \sigma &= \llbracket B_1 \rrbracket \sigma \wedge \llbracket B_2 \rrbracket \sigma \end{split}$$

Program Semantics

The small-step semantics of programs is defined by the relation \sim : Configs \times Configs which is defined as follows:

Function $\llbracket - \rrbracket$: Prog $\times S \to S$ describes the computation performed by a program *P* starting in state σ as follows:

$$\mathbf{J}\mathbf{Y}\mathbf{U} \qquad [\![P]\!]\sigma = \sigma' \text{ iff } (P,\sigma) \leadsto^* \sigma'$$

8/26

Specification of the Conditions

■ formulas in first-order logic (FO) with usual syntax and semantics

- $\blacksquare \ \sigma \vdash F \text{ means: } F \text{ holds in state } \sigma$
- $\blacksquare \ \{F\} = \{\sigma \mid \sigma \vdash F\}$

Correctness Assertions:

 $\{F\} P \{G\}$

holds iff for all states $\sigma \in S,$ if

σ ⊢ F
 (P, σ) ↔* σ'

then $\sigma' \vdash G$

Hoare Calculus: Rule Schemas

Inference rule:

$$\frac{S_1 \quad \dots \quad S_n}{S}$$

S can be derived from assumptions S_1, \ldots, S_n

Axiom rule:

S

Inference rule without any assumption.

Proof tree of S:

Derivation with S in the root and only axioms in the leaves.

Rules of the Hoare Calculus

$$FF skip {F}$$

$$\frac{\{F\} P_1 \{H\} \{H\} P_2\{G\}}{\{F\} P_1; P_2\{G\}}$$

$$\frac{\{F \land B\} P_1 \{G\} \qquad \{F \land \neg B\} P_2 \{G\}}{\{F\} \text{ if } B \text{ then } P_1 \text{ else } P_2 \{G\}}$$

$$\frac{\{F \land B\} P\{F\}}{\{F\} \text{ while } B \text{ do } P\{F \land \neg B\}}$$

Rules of the Hoare Calculus

JZI

$$\begin{array}{ccc} \vdash F \rightarrow F' & \{F'\} \ P \ \{G'\} & \vdash G' \rightarrow G \\ \\ \hline & \{F\} \ P \ \{G\} \end{array}$$

$$\frac{\{F_1\} P \{G\} \quad \{F_2\} P\{G\}}{\{F_1 \lor F_2\} P \{G\}}$$

$$\frac{\{F\} P \{G_1\}}{\{F\} P \{G_1\}} \frac{\{F\} P \{G_2\}}{\{F\} P \{G_1 \land G_2\}}$$

Separation Logic

Reynolds, John C. "Separation logic: A logic for shared mutable data structures." Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on. IEEE, 2002, citations: 2317

O'Hearn, Peter, John Reynolds, and Hongseok Yang. "Local reasoning about programs that alter data structures." International Workshop on Computer Science Logic. Springer, Berlin, Heidelberg, 2001, citations: 758

Extension of WHILE Language

We consider an extension of WHILE with pointers, memory allocation, and memory deallocation

::=	skip	no operation
	$P_1; P_2$	sequential composition
	V := E	assignment
	if B then P_1 else P_2	branching
	while B do P	loop
	$V := \operatorname{cons}(E_1, \ldots, E_n)$	allocation
	free(E)	deallocation
	V := [E]	dereferencing
	[E] := E	heap assignment
	::= 	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Remarks:

■ reading, writing, and disposing pointers can fail if not allocated properly

allocation never fails

Heap Memory Model

program state

stack:

mapping $s \colon \text{Var} \to \mathbb{Z}$ of variables from set of variables Var to values (integers)

heap:

mapping $h: \operatorname{Addr} \to \mathbb{Z}$ of addresses (finite subset of \mathbb{N}) to values \Rightarrow arithmetic with addresses is possible

set of all states

 $S = \{(s,h) \mid s \text{ is stack}, h \text{ is heap}\}$

Program Semantics by Example

Examples by Cristina Serban, http://www-verimag.imag.fr/~serban/

Problem with the Hoare Calculus

In the classical Hoare Calculus the following rules holds

 $\frac{\{E_1\}P\{E_2\}}{\{E_1 \land E\}P\{E_2 \land E\}}$

if no free variable occurring in E is modified by P.

This rule does not with pointers:

$$\{X \mapsto 0\}[X] := 2\{X \mapsto 2\}$$
$$\{X \mapsto 0 \land Y \mapsto 0\}[X] := 2\{X \mapsto 2 \land Y \mapsto 0\}$$

Semantics of the Extended WHILE Language

Now \sim : Configs × Configs is defined as follows:

$$(V := \operatorname{cons}(E_1, \dots, E_n), (s, h)) \quad \rightsquigarrow \quad (s', h') \text{ with } \begin{cases} s'(V) = \alpha_1 & \alpha_i \in \operatorname{Addr}^1 \\ s'(X) = s(X) & X \neq V \\ h'(\alpha_i) = [E_i] s \\ h'(\beta) = h(\beta) & \beta \neq \alpha_i \end{cases}$$

$$(\mathsf{free}(E),(s,h)) \qquad \qquad \sim \quad (s,h|dom(h) \setminus \{\llbracket E \rrbracket s\}) \text{ if }$$

$$(V := [E], (s, h)) \qquad \qquad \sim \quad (s', h) \text{ with } \begin{aligned} s'(V) &= h(\llbracket E \rrbracket s) \\ s'(X) &= s(X) \text{ for } X \neq V \end{aligned}$$

$$([E] := E', (s, h)) \qquad \qquad \sim \quad (s, h') \text{ with } \frac{h'(\llbracket E \rrbracket s) = \quad \llbracket E' \rrbracket s}{h'(\alpha) = \quad h(\alpha)} \quad \beta \neq \llbracket E \rrbracket s$$

The last three rules are only applicable if $\llbracket E \rrbracket s \in dom(h)$.

 $^{^{1}\}alpha_{i}$ are n new addresses

Heap Assertions

emp

The heap is empty.

 $\blacksquare \ E \mapsto E'$

The cell in the heap with address E contains content E'.

■ $P_1 * P_2$ (separating conjunction) The heap consists of two disjoint parts such that in one part P_1 holds and in the other part P_2 holds.

Examples

- $\blacksquare \ X \mapsto 1 * X \mapsto 1 \text{ is unsatisfiable.}$
- $X \mapsto 1 * Y \mapsto 1$ is unsatisfiable in a state in which X and Y refer to the same location.
- $\blacksquare X \mapsto E_1 \land Y \mapsto E_2 \text{ asserts that } E_1 = E_2.$

Example of Sharing Patterns

$$\begin{array}{c} x \mapsto 3, y * y \mapsto 3, x \\ \xrightarrow{\text{STORE}} & & \text{HEAP} \\ \hline x : a \\ y : b \\ \hline 3 \\ b \\ \hline 3 \\ c \\ \hline x \mapsto 3, y \land y \mapsto 3, x \end{array} \qquad \begin{array}{c} x \rightarrow 3 \\ \xrightarrow{\text{OP}} \\$$

STORE HEAP x:a а 3 y:a

Examples by Cristina Serban, http://www-verimag.imag.fr/~serban/

3 - y

0

Semantics of Heap Assertions

Let *s* be a stack, *h*, be a heap and *P* an assertion. We define that *P* is true in (s, h) (written as $s, h \vdash P$) if the following holds:

$s, h \vdash emp$	iff	$dom(h) = \{\}$
$s,h\vdash E\mapsto E'$	iff	$dom(h) = \{\llbracket E \rrbracket s\}$
		$h(\llbracket E\rrbracket s) = \llbracket E'\rrbracket s$
$s, h \vdash P_1 * P_2$	iff	$\exists h_1, h_2: dom(h_1) \cap dom(h_2) = \emptyset, h_1 \cup h_2 = h,$
		$s, h_1 \vdash P_1,$
		$s, h_2 \vdash P_2$
$s,h\vdash B$	iff	$\llbracket B \rrbracket s$ where B is a pure formula

Hoare Triples for Separation Logic

A hoare triple $\{F\}P\{G\}$ holds iff for all configurations (s, h) with $s, h \vdash F$

- 1. $(P, (s, h)) \not\sim^* \text{error}$
- 2. $\forall (s',h')$ with $(P,(s,h)) \sim^* (s',h') : (s',h') \vdash G$

Example

triple	holds
$\overline{\{V\mapsto -\}[V]:=0\{V\mapsto 0\}}$	1
$\overline{\{V\mapsto -\}[V]:=1\{V\mapsto 0\}}$	×
$\{\}[V] := 0\{V \mapsto 0\}$	×

where $E \mapsto -$ means $\exists E' : E \mapsto E'$

Inference Rules: Axioms

$\{E\mapsto -\}$	free(E)	{ emp }	
$\{(E\mapsto -)\ast R\}$	free(E)	$\{R\}$	
{emp}	$V:=\operatorname{\mathbf{cons}}(E)$	$\{V \mapsto E\}$	
$\{R\}$	$V:=\operatorname{\mathbf{cons}}(E)$	$\{V \mapsto E * R\}$	
$\{E\mapsto -\}$	[E] := E'	$\{E \mapsto E'\}$	
$\{(E\mapsto -)\ast R\}$	[E] := E'	$\{E \mapsto E' * R\}$	
$\{(E\mapsto E')\ast R\}$	X := [E]	$\{X = E' \land E \mapsto E' \ast R\}$	$X \not\in E, E', R$
$\{(E \mapsto E') \land X = x\}$	X := [E]	$\{X = E' \land E[x/X] \mapsto E'\}$	

where $E \mapsto -$ means $\exists E' : E \mapsto E'$

Frame Rule

 $\frac{\{E_1\}P\{E_2\}}{\{E_1 * E\}P\{E_2 * E\}}$

where for all free variables X of $E: X \notin mod(P)$ and mod(P) is defined as follows

$$mod(\mathbf{skip}) = \emptyset$$

$$mod(V := E) = \{V\}$$

$$mod(P_1; P_2) = mod(P_1) \cup mod(P_2)$$

$$mod(\mathbf{if} B \mathbf{then} P_1 \mathbf{else} P_2) = mod(P_1) \cup mod(P_2)$$

$$mod(\mathbf{while} B \mathbf{do} P) = mod(P)$$

Outlook: Inductive Data Structures & Recursion

definition of tree(x) with root pointer x:

x = nil : \Rightarrow tree(x) emp $x \neq nil$: $x \mapsto (y, z) * tree(y) * tree(z) \Rightarrow$ tree(x) deltree(*x) { if x == nil then return: else { l, r := x.left, x.right;deltree(l); deltree(r);free(x);} }

Example by James Brotherston, http://www0.cs.ucl.ac.uk/staff/J.Brotherston/

Outlook: Deletion of a Tree

```
\{tree(x)\}\
deltree(*x) {
  if x == nil then return;
\{eheap\}
  else {
\{x \mapsto (y, z) * tree(y) * tree(z)\}\}
     l, r := x.left, x.right;
\{x \mapsto (y, z) * tree(l) * tree(r)\}
     deltree(l);
\{x \mapsto (y, z) * \operatorname{emp} * tree(r)\}
     deltree(r);
\{x \mapsto (y, z) * emp * emp\}
     free(x);
{emp * emp * emp}
  }
{emp}
{emp}
```