FIRST-ORDER LOGIC

Pragmatics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)risc.jku.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at
Pragmatics

We will now investigate the **pragmatics** (practical use) of first-order logic in two contexts.

- **Defining Models**
 - Introducing new domains and operations.
 - Unique characterizations of their meaning.

- **Specifying Problems**
 - Describing expectations for computations.
 - Assumptions on the inputs and guarantees for the outputs.

Highly relevant for computer science and mathematics.
Standard Models

We assume the following “standard models” as given.

Natural Numbers \(\mathbb{N} = \{0, 1, 2, \ldots\}, \mathbb{N}_n = \{0, \ldots, n - 1\}, \mathbb{N}_{>0} = \{1, 2, \ldots\} \), etc.

Integer Numbers \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \).

Real Numbers \(\mathbb{R}, \mathbb{R}_{\geq0}, \mathbb{R}_{>0} \).

- Usual arithmetic operations for all number domains.
- **Sets** \(\mathcal{P}(T) \): all sets with elements of set \(T \).
 - Element predicate \(e \in S \), set builder term \(\{t \mid x \in S \land \ldots \land F\} \).
- **Products** \(T_1 \times \ldots \times T_n \): all tuples \((c_1, \ldots, c_n) \) with components from \(T_1, \ldots, T_n \).
 - For \(t = (c_1, \ldots, c_n) \) we have \(t.1 = c_1, \ldots, t.n = c_n \).
- **Sequences** \(T^* \): all finite sequences with values from \(T \); \(T^\omega \): all infinite sequences.
 - \(s \in T^* : s = [s(0), s(1), s(2), \ldots, s(n - 1)] \), \(\text{length}(s) = n \).

The “builtin data types” of our models.
Domain Definitions

From the standard domains, we may build new domains.

■ A domain definition

\[T := t \]

defines a new domain \(T \) from a term \(t \) that denotes a set (constructed from previous sets by the application of set builders and/or domain constructors).

\text{Nat} := \mathbb{N}_{2^{32}}
\text{Int} := \{ i \mid i \in \mathbb{Z} \land -2^{31} \leq i \land i < 2^{31} \}
\text{IntArray} := \text{Int}^*
\text{IntStream} := \text{Int}^\omega
\text{Primes} := \{ x \mid x \in \mathbb{N} \land x \geq 2 \land (\forall y \in \mathbb{N} : 1 < y \land y < x \rightarrow \neg(y | x)) \}
Explicit Function Definitions

A new function may be introduced by describing its value.

- An explicit function definition
 \[f : T_1 \times \ldots \times T_n \to T \]
 \[f(x_1, \ldots, x_n) := t_x \]

- introduces a new \(n\)-ary function symbol \(f\) with
- a type signature \(T_1 \times \ldots \times T_n \to T\) with sets \(T_1, \ldots, T_n, T\),
- a list of variables \(x_1, \ldots, x_n\) (the parameters), and
- a term \(t_x\) (the body) whose free variables occur in \(x_1, \ldots, x_n\);
- case \(n = 0\): the definition of a constant \(f : T, f := t\).

We have to show \((\forall x_1 \in T_1, \ldots, x_n \in T_n : t_x \in T)\) and then know
\[\forall x_1 \in T_1, \ldots, x_n \in T_n : f(x_1, \ldots, x_n) = t_x \]

The body \(t_x\) may only refer to previously defined functions (no recursion).
Examples

■ Definition: Let x and y be natural numbers. Then the square sum of x and y is the sum of the squares of x and y.

$$\text{squaresum}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$$

$$\text{squaresum}(x,y) := x^2 + y^2$$

■ Definition: Let x and y be natural numbers. Then the squared sum of x and y is the square of z where z is the sum of x and y.

$$\text{sumsquared}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$$

$$\text{sumsquared}(x,y) := \text{let } z = x + y \text{ in } z^2$$

■ Definition: Let n be a natural number. Then the square sum set of n is the set of the square sums of all numbers x and y from 1 to n.

$$\text{squaresumset}: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$$

$$\text{squaresumset}(n) := \{\text{squaresum}(x,y) \mid x, y \in \mathbb{N} \land 1 \leq x \leq n \land 1 \leq y \leq n\}$$
Predicate Definitions

A new predicate may be introduced by describing its truth value.

- An explicit predicate definition
 \[p \subseteq T_1 \times \ldots \times T_n \]
 \[p(x_1, \ldots, x_n) \iff F_x \]

 - introduces a new \(n \)-ary predicate symbol \(p \) with
 - a type signature \(T_1 \times \ldots \times T_n \) with sets \(T_1, \ldots, T_n \),
 - a list of variables \(x_1, \ldots, x_n \) (the parameters), and
 - a formula \(F \) (the body) whose free variables occur in \(x_1, \ldots, x_n \);
 - case \(n = 0 \): the definition of a truth value constant \(p : \iff F_x \).

- We then know
 \[\forall x_1 \in T_1, \ldots, x_n \in T_n : p(x_1, \ldots, x_n) \iff F_x \]

The body \(F_x \) may only refer to previously defined predicates (no recursion).
Examples

Definition: Let x, y be natural numbers. Then x divides y (written as $x|y$) if $x \cdot z = y$ for some natural number z.

\[
| \subseteq \mathbb{N} \times \mathbb{N} \\
x|y :\iff \exists z \in \mathbb{N} : x \cdot z = y
\]

Definition: Let x be a natural number. Then x is prime if x is at least two and the only divisors of x are one and x itself.

\[
isprime \subseteq \mathbb{N} \\
isprime(x) :\iff x \geq 2 \land \forall y \in \mathbb{N} : y|x \rightarrow y = 1 \lor y = x
\]

Definition: Let p, n be natural numbers. Then p is a prime factor of n, if p is prime and divides n.

\[
isprimefactor \subseteq \mathbb{N} \times \mathbb{N} \\
isprimefactor(p, n) :\iff isprime(p) \land p|n
\]
Implicit Function Definitions

A new function may be introduced by a condition on its result value.

- An implicit function definition

\[f : T_1 \times \ldots \times T_n \rightarrow T \]

\[f(x_1, \ldots, x_n) := \textbf{such} \ y: F_{x,y} \ (\text{or: } \textbf{the} \ y: F_{x,y}) \]

- introduces a new \(n \)-ary function constant \(f \) with
- a type signature \(T_1 \times \ldots \times T_n \rightarrow T \) with sets \(T_1, \ldots, T_n, T \),
- a list of variables \(x_1, \ldots, x_n \) (the parameters),
- a variable \(y \) (the result variable),
- a formula \(F_{x,y} \) (the result condition) whose free variables occur in \(x_1, \ldots, x_n, y \).

- We then know

\[\forall x_1 \in T_1, \ldots, x_n \in T_n : (\exists y \in T : F_{x,y}) \rightarrow (\exists y \in T : F_{x,y} \land y = f(x_1, \ldots, x_n)) \]

- If some value satisfies the condition, the function result is such a value.
- With \textbf{the} we claim that the value of \(f \) always exists and is unique.

The definition of a function by a formula (rather than a term).
Examples

■ Definition: *A root* of real number x is a real number y such that the square of y is x.

\[
a\text{Root}: \mathbb{R} \rightarrow \mathbb{R} \\
a\text{Root}(x) := \text{such } y: y^2 = x
\]

■ Definition: *The root* of non-negative real x is that real y such that the square of y is x and $y \geq 0$.

\[
\text{theRoot}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} \\
\text{theRoot}(x) := \text{the } y: y^2 = x \land y \geq 0
\]

■ Definition: Let $m, n \in \mathbb{N}$ with n positive. Then the *(truncated) quotient* $q \in \mathbb{N}$ of m and n is such that $m = n \cdot q + r$ for some $r \in \mathbb{N}$ with $r < n$.

\[
\text{quotient}: \mathbb{N} \times \mathbb{N}_{>0} \rightarrow \mathbb{N} \\
\text{quotient}(m, n) := \text{the } q: \exists r \in \mathbb{N}: m = n \cdot q + r \land r < n
\]

■ Definition: Let x, y be positive natural numbers. The *greatest common divisor* of x and y is the greatest such number that divides both x and y.

\[
g\text{cd}: \mathbb{N}_{>0} \times \mathbb{N}_{>0} \rightarrow \mathbb{N}_{>0} \\
g\text{cd}(x, y) := \text{the } z: z | x \land z | y \land \forall z' \in \mathbb{N}_{>0}: z' | x \land z' | y \rightarrow z' \leq z
\]
Predicates versus Functions

A predicate can give rise to functions in two ways.

- A predicate:
 \[
 \text{isprimefactor} \subseteq \mathbb{N} \times \mathbb{N}
 \]
 \[
 \text{isprimefactor}(p,n) :\Leftrightarrow \text{isprime}(p) \land p|n
 \]

- An implicitly defined function:
 \[
 \text{someprimefactor} : \mathbb{N} \to \mathbb{N}
 \]
 \[
 \text{someprimefactor}(n) := \textbf{such } p: \text{isprime}(p) \land p|n
 \]

- An explicitly defined function whose result is a set:
 \[
 \text{allprimefactors} : \mathbb{N} \to \mathcal{P}(\mathbb{N})
 \]
 \[
 \text{allprimefactors}(n) := \{p \in \mathbb{N} \mid \text{isprime}(p) \land p|n\}
 \]

The preferred style of definition is a matter of taste and purpose.
Specifying Problems

An important role of logic in computer science is to specify problems.

- The specification of a (computational) problem
 - **Input:** $x_1 \in T_1, \ldots, x_n \in T_n$ where I_x
 - **Output:** $y_1 \in U_1, \ldots, y_m \in U_m$ where $O_{x,y}$

- consists of a list of input variables x_1, \ldots, x_n with types T_1, \ldots, T_n,
- a formula I_x (the input condition or precondition) whose free variables occur in x_1, \ldots, x_n
- a list of output variables y_1, \ldots, y_m with types U_1, \ldots, U_m, and
- a formula $O_{x,y}$ (the output condition or postcondition) whose free variables occur in $x_1, \ldots, x_n, y_1, \ldots, y_m$

The specification is expressed with the help of auxiliary functions and predicates.
Example

Problem: extract from a finite sequence \(s \) of natural numbers a subsequence \(t \) of length \(n \) starting at position \(p \).

Example: \(s = [2,3,5,7,5,11] \), \(p = 2 \), \(n = 3 \) \(\Rightarrow \) \(t = [5,7,5] \)

Input: \(s \in \mathbb{N}^* \), \(n \in \mathbb{N} \), \(p \in \mathbb{N} \) where \(n + p \leq \text{length}(s) \)

(subsequence is in range of array)

Output: \(t \in \mathbb{N}^* \) where

\(\text{length}(t) = n \) \(\land \)

(length of result sequence)

\(\forall i \in \mathbb{N}_n: t(i) = s(i + p) \)

(content of result sequence)
The Adequacy of Specifications

Input: x where I_x
Output: y where $O_{x,y}$

- Is precondition satisfiable? ($\exists x: I_x$)
 Otherwise no input is allowed.

- Is precondition not trivial? ($\exists x: \neg I_x$)
 Otherwise every input is allowed, why then the precondition?

- Is postcondition always satisfiable? ($\forall x: I_x \rightarrow \exists y: O_{x,y}$)
 Otherwise no implementation is legal.

- Is postcondition not always trivial? ($\exists x, y: I_x \land \neg O_{x,y}$)
 Otherwise every implementation is legal.

- Is result unique? ($\forall x, y_1, y_2: (I_x \land O_{x,y}[y_1/y] \land O_{x,y}[y_2/y] \rightarrow y_1 = y_2)$)
 Whether this is required, depends on our expectations.

Ask these questions to ensure that specification expresses your intentions.
Example: The Problem of Integer Division

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \)
Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \)

- The postcondition is always satisfiable but not trivial.
 - For \(m = 13, n = 5 \), e.g. \(q = 2, r = 3 \) is legal but \(q = 2, r = 4 \) is not.
- But the result is not unique.
 - For \(m = 13, n = 5 \), both \(q = 2, r = 3 \) and \(q = 1, r = 8 \) are legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \)
Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \land r < n \)

- Now the postcondition is not always satisfiable.
 - For \(m = 13, n = 0 \), no output is legal.

Input: \(m \in \mathbb{N}, n \in \mathbb{N} \) where \(n \neq 0 \)
Output: \(q \in \mathbb{N}, r \in \mathbb{N} \) where \(m = n \cdot q + r \land r < n \)

- The precondition is not trivial but satisfiable.
 - \(m = 13, n = 0 \) is not legal but \(m = 13, n = 5 \) is.
- The postcondition is always satisfiable and result is unique.
 - For \(m = 13, n = 5 \), only \(q = 2, r = 3 \) is legal.
Example: The Problem of Linear Search

Problem: given a finite integer sequence a and an integer x, determine the smallest position p at which x occurs in a ($p = -1$, if x does not occur in a).

Example: $a = [2, 3, 5, 7, 5, 11], x = 5 \Rightarrow p = 2$

Input: $a \in \mathbb{Z}^*, x \in \mathbb{Z}$

Output: $p \in \mathbb{N} \cup \{-1\}$ where

\[
\begin{align*}
\text{let } n &= \text{length}(a) \; \text{in} \\
\text{if } \exists p \in \mathbb{N}_n : a(p) &= x & (x \text{ occurs in } a) \\
\text{then } p &\in \mathbb{N}_n \land a(p) = x \land & (p \text{ is the index of some occurrence of } x) \\
&\quad (\forall q \in \mathbb{N}_n : a(q) = x \Rightarrow p \leq q) & (p \text{ is the smallest such index}) \\
\text{else } p &= -1
\end{align*}
\]

All inputs are legal; the result always exists and is uniquely determined.
Example: The Problem of Binary Search

Problem: given a finite integer sequence a that is sorted in ascending order and an integer x, determine some position p at which x occurs in a ($p = -1$, if x does not occur in a).

Example: $a = [2, 3, 5, 5, 5, 7, 11], x = 5 \leadsto p \in \{2, 3, 4\}$

Input: $a \in \mathbb{Z}^*, x \in \mathbb{Z}$ where

\[
\text{let } n = \text{length}(a) \text{ in } \forall k \in \mathbb{N}_{n-1}: a(k) \leq a(k+1) \quad (a \text{ is sorted})
\]

Output: $p \in \mathbb{N} \cup \{-1\}$ where

\[
\text{let } n = \text{length}(a) \text{ in } \text{if } \exists p \in \mathbb{N}_n: a(p) = x \quad (x \text{ occurs in } a) \\
\text{then } p \in \mathbb{N}_n \land a(p) = x \quad (p \text{ is the index of some occurrence of } x) \\
\text{else } p = -1
\]

Not all inputs are legal; for every legal input, the result exists but is not unique.
Example: The Problem of Sorting

Problem: given a finite integer sequence a, determine that permutation b of a that is sorted in ascending order.

Example: $a = [5, 3, 7, 2, 3] \leadsto b = [2, 3, 3, 5, 7]$

Input: $a \in \mathbb{Z}^*$

Output: $b \in \mathbb{Z}^*$ where

\[
\begin{align*}
&\text{let } n = \text{length}(a) \text{ in} \\
&\text{length}(b) = n \land \\
&(\forall k \in \mathbb{N}_{n-1}: b(k) \leq b(k + 1)) \land \\
&\exists p \in \mathbb{N}_n^*: \\
&(\forall k_1, k_2 \in \mathbb{N}_n: k_1 \neq k_2 \rightarrow p(k_1) \neq p(k_2)) \land \\
&(\forall k \in \mathbb{N}_n: a(k) = b(p(k)))
\end{align*}
\]

All inputs are legal; the result always exists and is uniquely determined.
Implementing Problem Specifications

Input: \(x_1 \in T_1, \ldots, x_n \in T_n \) where \(I_x \)

Output: \(y_1 \in U_1, \ldots, y_m \in U_m \) where \(O_{x,y} \)

- Specification demands definition of function \(f : T_1 \times \ldots \times T_n \to U_1 \times \ldots \times U_m \) with property
 \[
 \forall x_1 \in T_1, \ldots, x_n \in T_n : I_x \to \text{let } (y_1, \ldots, y_m) = f(x_1, \ldots, x_n) \text{ in } O_{x,y}
 \]
 - For all arguments \(x_1, \ldots, x_n \) that satisfy the input condition,
 - the result \((y_1, \ldots, y_m)\) of \(f \) satisfies the output condition.

- The specification itself already implicitly defines such a function:
 \[
 f(x_1, \ldots, x_n) := \text{such } y_1, \ldots, y_m : I_x \to O_{x,y}
 \]

- However, actually we want an explicitly defined function (computer program):
 \[
 f(x_1, \ldots, x_n) := t_x
 \]

A core goal of computer science is to specify problems, to implement the specifications, and to verify the correctness of the implementation (e.g., by formal methods).