PROPOSITIONAL FORMULAS: SYNTAX

VL Logic
Part I: Propositional Logic
Example: Party Planning

We want to plan a party.

Unfortunately, the selection of the guests is not straightforward.

We have to consider the following rules.

1. If two people are married, we have to invite them both or none of them. Alice is married to Bob and Cecile is married to David.

2. If we invite Alice then we also have to invite Cecile. Cecile does not care if we invite Alice but not her.

3. David and Eva can’t stand each other, so it is not possible to invite both. One of them should be invited.

4. We want to invite Bob and Fred.

Question: Can we find a guest list?
Party Planning with Propositional Logic

- **propositional variables:**
 inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva, inviteFred

- **constraints:**
 1. invite married: inviteAlice ↔ inviteBob, inviteCecile ↔ inviteDavid
 2. if Alice then Cecile: inviteAlice → inviteCecile
 3. either David or Eva: ¬ (inviteEva ↔ inviteDavid)
 4. invite Bob and Fred: inviteBob ∧ inviteFred

- **encoding in propositional logic:**

 (inviteAlice ↔ inviteBob) ∧ (inviteCecile ↔ inviteDavid) ∧
 (inviteAlice → inviteCecile) ∧ ¬ (inviteEva ↔ inviteDavid) ∧
 inviteBob ∧ inviteFred
Syntax of Propositional Logic

The set \mathcal{L} of well-formed propositional formulas is the smallest set such that

1. $\top, \bot \in \mathcal{L}$;
2. $\mathcal{P} \subseteq \mathcal{L}$ where \mathcal{P} is the set of atomic propositions (atoms, variables);
3. if $\phi \in \mathcal{L}$ then $(\neg \phi) \in \mathcal{L}$;
4. if $\phi, \psi \in \mathcal{L}$ then $(\phi \circ \psi) \in \mathcal{L}$ with $\circ \in \{\lor, \land, \leftrightarrow, \rightarrow\}$.

\mathcal{L} is the language of propositional logic. The elements of \mathcal{L} are propositional formulas.
Rules of Precedence

To reduce the number of parenthesis, we use the following conventions (in case of doubt, uses parenthesis!):

- ¬ is stronger than ∧
- ∧ is stronger than ∨
- ∨ is stronger than →
- → is stronger than ↔
- Binary operators of same strength are assumed to be left parenthesized (also called “left associative”)

Example:

- \(\neg a \land b \lor c \rightarrow d \leftrightarrow f \) is the same as \(((\neg a) \land b) \lor c \rightarrow d) \leftrightarrow f \).
- \(a' \lor a'' \land a''' \lor b' \lor b'' \) is the same as \(((a' \lor a'') \land (a''' \lor b')) \lor b'').
- \(a' \land a'' \land a''' \lor b' \land b'' \) is the same as \(((a' \land a'') \land a''' \lor (b' \land b'')).
Excursus: Rooted Tree

A rooted tree is a special kind of graph of the following shape:

- A single vertex v is a tree.
 The vertex v is the root of this tree.
- Let t_1, \ldots, t_n be n trees, such that
 - t_1 has root v_1
 - \ldots
 - t_n has root v_n.
 Further, let v be a vertex not occurring in t_1, \ldots, t_n. We obtain a tree with root v if we add edges from v to v_1, \ldots, v_n.
 The vertices v_1, \ldots, v_n are called children of v.
- Nothing else is a tree.

A node without children is called leaf.
Formula Tree

- formulas have a tree structure
 - **inner nodes**: connectives
 - **leaves**: truth constants, variables

default: inner nodes have **one** child node (negation) or **two** nodes as children (other connectives).

- tree structure reflects the use of parenthesis

simplification:
disjunction and conjunction may be considered as *n*-ary operators, i.e., if a node N and its child node C are of the same kind of connective (conjunction / disjunction), then the children of C can become direct children of N and the C is removed.
The formula

\[(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \rightarrow \neg b) \lor (\bot \lor a \lor b)))\]

has the formula tree
The formula

\[(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \rightarrow \neg b) \lor (\bot \lor a \lor b)))\]

has the simplified formula tree
Subformulas

An **immediate subformula** is defined as follows:

- truth constants and atoms have no immediate subformula.
- only immediate subformula of $\neg\phi$ is ϕ.
- formula $\phi \circ \psi$ ($\circ \in \{\land, \lor, \leftrightarrow, \rightarrow\}$) has immediate subformulas ϕ and ψ.

Informal: a subformula is a formula that is part of a formula

The **set of subformulas** of a formula ϕ is the smallest set S with

1. $\phi \in S$
2. if $\psi \in S$ then all immediate subformulas of ψ are in S

The subformulas of $(a \lor b) \rightarrow (c \land \neg \neg d)$ are

$$\{a, b, c, d, \neg d, \neg \neg d, a \lor b, c \land \neg \neg d, (a \lor b) \rightarrow (c \land \neg \neg d)\}$$
Limboole

- SAT-solver
- available at http://fmv.jku.at/limboole/
- input format in BNF:

\[
\begin{align*}
\langle \text{expr} \rangle & ::= \langle \text{iff} \rangle \\
\langle \text{iff} \rangle & ::= \langle \text{implies} \rangle | \langle \text{implies} \rangle \text{ "} \langle \text{implies} \rangle \\
\langle \text{implies} \rangle & ::= \langle \text{or} \rangle | \langle \text{or} \rangle \text{ "} \langle \text{or} \rangle | \langle \text{or} \rangle \text{ "} \langle \text{or} \rangle \\
\langle \text{or} \rangle & ::= \langle \text{and} \rangle | \langle \text{and} \rangle \text{ "} \langle \text{and} \rangle \\
\langle \text{and} \rangle & ::= \langle \text{not} \rangle | \langle \text{not} \rangle \text{ "} \langle \text{not} \rangle \\
\langle \text{not} \rangle & ::= \langle \text{basic} \rangle | \text{ "} ! \langle \text{not} \rangle \\
\langle \text{basic} \rangle & ::= \langle \text{var} \rangle | \text{ "} (\langle \text{expr} \rangle \text{ "})
\end{align*}
\]

where 'var' is a string over letters, digits, and \(-\) _ \[\] $ \@$

In Limboole the formula \((a \lor b) \rightarrow (c \land \neg\neg d)\) is represented as

\(((a \mid b) \rightarrow (c \& \text{!!}d))\)
PROPOSITIONAL FORMULAS: SEMANTICS

VL Logic
Part I: Propositional Logic
Assignment

- A variable can be assigned one of two values from the two-valued domain \(B \), where \(B = \{1, 0\} \).

- The mapping \(\nu : P \rightarrow B \) is called **assignment**, where \(P \) is the set of atomic propositions.

- We sometimes write an assignment \(\nu \) as set \(V \) with \(V \subseteq P \cup \{¬x | x \in P\} \) such that:
 - \(x \in V \) iff \(\nu(x) = 1 \)
 - \(¬x \in V \) iff \(\nu(x) = 0 \)

- For \(n \) variables, there are \(2^n \) assignments possible.
Negation

- unary connective ¬ (operator with exactly one argument)
- negating the truth value of its argument
- alternative notation: !φ, \(\bar{φ} \), −φ, NOTφ

<table>
<thead>
<tr>
<th>φ</th>
<th>¬φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Example:

- If the atom “It rains.” is true then the negation “It does not rain.” is false.
- If atom \(a \) is true then \(¬a \) is false.
- If formula \(((a \lor x) \land y) \) is true then formula \(¬((a \lor x) \land y) \) is false.
- If formula \(((b \rightarrow y) \land z) \) is true then formula \(¬((b \rightarrow y) \land z) \) is false.
Conjunction

- A conjunction is true iff both arguments are true.
- Alternative notation for $\phi \land \psi$: $\phi \& \psi$, $\phi \psi$, $\phi \ast \psi$, $\phi \cdot \psi$, $\phi \text{AND} \psi$
- For $(\phi_1 \land \ldots \land \phi_n)$ we also write $\bigwedge_{i=1}^{n} \phi_i$.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \land \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table:

Set view:

Example:

- $(a \land \neg a)$ is always false.
- $(\top \land a)$ is true if a is true. $(\bot \land \phi)$ is always false.
- If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.
Disjunction

- a disjunction is true iff at least one of the arguments is true
- alternative notation for $\phi \vee \psi$: $\phi | \psi$, $\phi + \psi$, $\phi OR \psi$
- For $(\phi_1 \vee \ldots \vee \phi_n)$ we also write $\bigvee_{i=1}^{n} \phi_i$.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \vee \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

truth table:

Example:

- $(a \lor \neg a)$ is always true.
- $(\top \lor a)$ is always true. $(\bot \lor a)$ is true if a is true.
- If $(a \rightarrow b)$ is true and $(\neg c \rightarrow d)$ then $(a \rightarrow b) \lor (\neg c \rightarrow d)$ is true.
Implication

- An implication is true iff the first argument is false or both arguments are true (Ex falsum quodlibet.)
- Alternative notation: $\phi \supset \psi$, ϕ IMPL ψ

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \rightarrow \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table:

Set view:

Example:

- If atom "It rains." is true and atom "The street is wet." is true then the statement "If it rains, the street is wet." is true.
- $(\perp \rightarrow a)$ and $(a \rightarrow a)$ are always true. $\top \rightarrow \phi$ is true if ϕ is true.
Equivalence

- true iff both subformulas have the same value
- alternative notation: $\phi = \psi$, $\phi \equiv \psi$, $\phi \sim \psi$

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \iff \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

truth table:

set view:

Example:

- The formula $a \iff a$ is always true.
- The formula $a \iff b$ is true iff a is true and b is true or a is false and b is false.
- $\top \iff \bot$ is never true.
The Logic Connectives at a Glance

<table>
<thead>
<tr>
<th>φ</th>
<th>ψ</th>
<th>⊤</th>
<th>⊥</th>
<th>¬φ</th>
<th>φ ∧ ψ</th>
<th>φ ∨ ψ</th>
<th>φ → ψ</th>
<th>φ ↔ ψ</th>
<th>φ ⊕ ψ</th>
<th>φ ↑ ψ</th>
<th>φ ↓ ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example:

\[
\neg (\neg \phi \land \neg \psi) \land (\phi \to \psi) \land (\psi \to \phi)
\]

<table>
<thead>
<tr>
<th>φ</th>
<th>ψ</th>
<th>\neg (\neg \phi \land \neg \psi)</th>
<th>\neg \phi \lor \psi</th>
<th>(\phi \to \psi) \land (\psi \to \phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Observation: connectives can be expressed by other connectives.
Other Connectives

- there are 16 different functions for binary connectives
- so far, we had $\land, \lor, \leftrightarrow, \rightarrow$
- further connectives:
 - $\phi \leftrightarrow \psi$ (also \oplus, xor, antivalence)
 - $\phi \uparrow \psi$ (nand, Sheffer Stroke Function)
 - $\phi \downarrow \psi$ (nor, Pierce Function)

<table>
<thead>
<tr>
<th>ϕ</th>
<th>ψ</th>
<th>$\phi \leftrightarrow \psi$</th>
<th>$\phi \uparrow \psi$</th>
<th>$\phi \downarrow \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- nor and nand can express every other boolean function (i.e., they are functional complete)
- often used for building digital circuits (like processors)
Semantics of Propositional Logic

Given assignment $\nu : \mathcal{P} \rightarrow \mathbb{B}$, the interpretation $[.]_\nu : \mathcal{L} \rightarrow \mathbb{B}$ is defined by:

- $[\top]_\nu = 1$, $[\bot]_\nu = 0$
- if $x \in \mathcal{P}$ then $[x]_\nu = \nu(x)$
- $[\neg \phi]_\nu = 1$ iff $[\phi]_\nu = 0$
- $[\phi \lor \psi]_\nu = 1$ iff $[\phi]_\nu = 1$ or $[\psi]_\nu = 1$

What about the other connectives?
Simple Algorithm for Satisfiability Checking

1 Algorithm: evaluate
 Data: formula ϕ
 Result: 1 iff ϕ is satisfiable

2 if ϕ contains a variable x then
3 pick $v \in \{\top, \bot\}$
4 /* replace x by truth constant v, evaluate resulting formula */
5 if evaluate($\phi[x|v]$) then return 1;
6 else return evaluate($\phi[x|\overline{v}]$);
7 else
8 switch ϕ do
9 case \top do return 1;
10 case \bot do return 0;
11 case $\neg \psi$ do return \neg evaluate(ψ) /* true iff ψ is false */;
12 case $\psi' \land \psi''$ do
13 return evaluate(ψ') && evaluate(ψ'') /* true iff both ψ' and ψ'' are true */
14 case $\psi' \lor \psi''$ do
15 return evaluate(ψ') || evaluate(ψ'') /* true iff ψ' or ψ'' is true */
Satisfying/Falsifying Assignments

- An assignment is called
 - **satisfying** a formula ϕ iff $[\phi]_\nu = 1$.
 - **falsifying** a formula ϕ iff $[\phi]_\nu = 0$.

- A satisfying assignment for ϕ is a **model** of ϕ.
- A falsifying assignment for ϕ is a **counter-model** of ϕ.

Example:

For formula $((x \land y) \lor \neg z)$,

- $\{\neg x, y, z\}$ is a counter-model,
- $\{x, y, z\}$ is a model.
- $\{x, y, \neg z\}$ is another model.
Properties of Propositional Formulas (1/3)

- formula ϕ is **satisfiable** iff there exists interpretation $[\cdot]_\nu$ with $[\phi]_\nu = 1$

 check with limboole -s

- formula ϕ is **valid** iff for all interpretations $[\cdot]_\nu$ it holds that $[\phi]_\nu = 1$

 check with limboole

- formula ϕ is **refutable** iff exists interpretation $[\cdot]_\nu$ with $[\phi]_\nu = 0$

 check with limboole

- formula ϕ is **unsatisfiable** iff $[\phi]_\nu = 0$ for all interpretations $[\cdot]_\nu$

 check with limboole -s
Properties of Propositional Formulas (2/3)

- A valid formula is called **tautology**
- An unsatisfiable formula is called **contradiction**

Example:

- \top is valid.
- \bot is unsatisfiable.
- $(a \lor \neg b) \land (\neg a \lor b)$ is refutable.
- $a \rightarrow b$ is satisfiable.
- $a \leftrightarrow \neg a$ is a contradiction.
- $(a \lor \neg b) \land (\neg a \lor b)$ is satisfiable.
Properties of Propositional Formulas (3/3)

- A satisfiable formula is
 - possibly valid
 - possibly refutable
 - not unsatisfiable.

- A valid formula is
 - satisfiable
 - not refutable
 - not unsatisfiable.

- A refutable formula is
 - possibly satisfiable
 - possibly unsatisfiable
 - not valid.

- An unsatisfiable formula is
 - refutable
 - not valid
 - not satisfiable.

Example:

- satisfiable, but not valid: $a \leftrightarrow b$
- satisfiable and refutable: $(a \lor b) \land (\neg a \lor c)$
- valid, not refutable $\top \lor (a \land \neg a)$; not valid, refutable $(\bot \lor b)$
Further Connections between Formulas

- A formula ϕ is valid iff $\neg \phi$ is unsatisfiable.

- A formula ϕ is satisfiable iff $\neg \phi$ is not valid.

- The formulas ϕ and ψ are equivalent iff $\phi \leftrightarrow \psi$ is valid.

- The formulas ϕ and ψ are equivalent iff $\neg(\phi \leftrightarrow \psi)$ is unsatisfiable.
PROPOSITIONAL FORMULAS:
IMPORTANT EQUIVALENCES

VL Logic
Part I: Propositional Logic
Semantic Equivalence

Two formulas ϕ and ψ are **semantically equivalent** (written as $\phi \iff \psi$) iff for all interpretations $[.]_\nu$, it holds that $[\phi]_\nu = [\psi]_\nu$.

- \iff is a **meta-symbol**, i.e., it is not part of the language.
- $\phi \iff \psi$ iff $\phi \leftrightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.
- If ϕ and ψ are not equivalent, we write $\phi \nleftrightarrow \psi$.

Example:

- $a \lor \neg a \nleftrightarrow b \rightarrow \neg b$
- $a \lor \neg a \iff b \lor \neg b$
- $(a \lor b) \land \neg(a \lor b) \nleftrightarrow \bot$
- $a \leftrightarrow (b \leftrightarrow c) \nleftrightarrow (a \leftrightarrow b) \leftrightarrow c$
Examples of Semantic Equivalences (1/2)

$\phi \land \psi \Leftrightarrow \psi \land \phi$	$\phi \lor \psi \Leftrightarrow \psi \lor \phi$	commutativity
$\phi \land (\psi \land \gamma) \Leftrightarrow (\phi \land \psi) \land \gamma$	$\phi \lor (\psi \lor \gamma) \Leftrightarrow (\phi \lor \psi) \lor \gamma$	associativity
$\phi \land (\phi \lor \psi) \Leftrightarrow \phi$	$\phi \lor (\phi \land \psi) \Leftrightarrow \phi$	absorption
$\phi \land (\psi \lor \gamma) \Leftrightarrow (\phi \land \psi) \lor (\phi \land \gamma)$	$\phi \lor (\psi \land \gamma) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \gamma)$	distributivity
$\neg (\phi \land \psi) \Leftrightarrow \neg \phi \lor \neg \psi$	$\neg (\phi \lor \psi) \Leftrightarrow \neg \phi \land \neg \psi$	laws of De Morgan
$\phi \leftrightarrow \psi \Leftrightarrow (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$	$\phi \leftrightarrow \psi \Leftrightarrow (\phi \land \psi) \lor (\neg \phi \land \neg \psi)$	synt. equivalence
Examples of Semantic Equivalences (2/2)

$\phi \lor \psi \iff \neg \phi \rightarrow \psi$	$\phi \rightarrow \psi \iff \neg \psi \rightarrow \neg \phi$	implications
$\phi \land \neg \phi \iff \bot$	$\phi \lor \neg \phi \iff \top$	complement
$\neg \neg \phi \iff \phi$		double negation
$\phi \land \top \iff \phi$	$\phi \lor \bot \iff \phi$	neutrality
$\phi \lor \top \iff \top$	$\phi \land \bot \iff \bot$	
$\neg \top \iff \bot$	$\neg \bot \iff \top$	