Propositional Skeleton

Example (arbitrary LRA formula)

\[x \neq y \land (2 \times x \leq z \lor \neg(x - y \geq z \land z \leq y)) \]

eliminate \(\neq \) by disjunction

\[
\left(x < y \lor x > y \right) \land \left(2 \times x \leq z \lor \neg(x - y \geq z \land z \leq y) \right)
\]

which is abstracted to a propositional formula called “propositional skeleton”

\[
(a \lor b) \land (c \lor \neg(d \land e)) \quad \text{with} \quad \alpha(x < y) = a, \quad \alpha(x > y) = b, \ldots
\]

SAT solver enumerates solutions, e.g., \(a = b = c = d = e = 1 \)

check solution literals with theory solver, e.g., Fourier-Motzkin

spurious solutions (disproven by theory solver) added as “lemma”, e.g., \(\neg(a \land b \land c \land c \land d \land e) \)

or just \(\neg(a \land b) \) after minimization

continue until SAT solver says unsatisfiable or theory solver satisfiable
Lemmas-on-Demand

this is an extremely “lazy” version of DPLL (T) / CDCL(T)

LemmasOnDemand(φ)

ψ = PropositionalSkeleton(φ)

let α be the abstraction function, mapping theory literals to prop. literals

while ψ has satisfiable assignment σ

let l₁, . . . , lₙ be all the theory literals with σ(α(lᵢ)) = 1

check conjunction L = l₁ ∧ · · · ∧ lₙ with theory solver

if theory solver returns satisfying assignment ρ return satisfiable

determine “small” sub-set \{k₁, . . . , kₘ\} ⊆ \{l₁, . . . , lₙ\} where

\[K = k₁ ∧ · · · ∧ kₘ \]
remains unsatisfiable (by theory solver)

add lemma ¬K to ψ, actually replace ψ by ψ ∧ α(¬K)

return unsatisfiable

note that these lemmas ¬K are all clauses
Minimal Unsatisfiable Set (MUS)

motivation: the lemmas we add in “lemmas-on-demand” should be small

\[
\text{MUS} = (a \lor \neg b) \land (a \lor b) \land (\neg a \lor \neg c) \land (\neg a \lor c) \land (a \lor \neg c) \land (a \lor c)
\]

- given an unsatisfiable set of “constraints” \(S \) (set of literals, or clauses)
- an MUS \(M \) is a sub-set \(M \subseteq S \) such that
 - \(M \) is still unsatisfiable
 - any \(M' \subset M \) (with \(M' \neq M \)) is satisfiable
- so an MUS is a “minimal” inconsistent subset
 - all constraints in the MUS are necessary for \(M \) to be inconsistent
 - so one minimal way to explain inconsistency of \(S \)
- note that “being inconsistent” is a monotone property
 - if \(A \subseteq B \) is a set of constraints
 - if \(A \) is unsatisfiable then \(B \) is unsatisfiable
 - essential for algorithms to compute an MUS
Iterative Destructive Algorithm for MUS Computation

destructive = remove constraints from an over-approximation of an MUS

\[\text{IterativeDestructiveMUS}(S)\]
\[
M = S \\
D = S \\
\text{while } D \neq \emptyset \\
\quad \text{pick constraint } C \in D \\
\quad \text{if } M \setminus \{C\} \text{ unsatisfiable remove } C \text{ from } M \\
\quad \text{remove } C \text{ from } D \\
\text{return } M
\]

needs exactly \(|S|\) satisfiability checks

any-time algorithm: preliminary result \(M\) remains inconsistent

can stop any time
QuickXplain Variant of MUS Computation

quickly “zoom in” on one MUS (particularly if there is a small one)

\[
QuickMUSRecursive(D)
\]

if \(M \setminus D \) is satisfiable

if \(|D| > 1\)

let \(D = L \cup R \) with \(|L|, |R| > 0\)

\[
QuickMUSRecursive(L)
\]

\[
QuickMUSRecursive(R)
\]

else remove \(D \) from \(M \)

\[
QuickMUS(S)
\]

global variable \(M = S \)

QuickMUSRecursive(S)

return \(M \)

needs at most \(2 \cdot |S| \) and at least \(|M| \) satisfiability checks
Theory of Arrays

- functions “read” and “write”: \(\text{read}(a, i), \text{write}(a, i, v) \)

- axioms

\[
\forall a, i, j: i = j \rightarrow \text{read}(a, i) = \text{read}(a, j) \quad \text{array congruence}
\]

\[
\forall a, v, i, j: i = j \rightarrow \text{read}(\text{write}(a, i, v), j) = v \quad \text{read over write 1}
\]

\[
\forall a, v, i, j: i \neq j \rightarrow \text{read}(\text{write}(a, i, v), j) = \text{read}(a, j) \quad \text{read over write 2}
\]

- used to model memory (HW and SW)

- eagerly reduce arrays to uninterpreted functions by eliminating “write”

\[
\text{read}(\text{write}(a, i, v), j) \quad \text{replaced by} \quad (i = j \ ? \ v : \text{read}(a, j))
\]

- more sophisticated non-eager algorithms are usually faster

\[\Box\] such as for instance the “lemmas-on-demand” algorithm in Boolector
Simple Array Example

\[
i \neq j \land u = \text{read}(\text{write}(a, i, v), j) \land v = \text{read}(a, j) \land u \neq v
\]

eliminate “write”

\[
i \neq j \land u = (i = j \ ? \ v : \text{read}(a, j)) \land v = \text{read}(a, j) \land u \neq v
\]

simplify conditional by assuming “\(i \neq j\)”

\[
i \neq j \land u = \text{read}(a, j) \land v = \text{read}(a, j) \land u \neq v
\]

applying congruence for both “read”

\[
i \neq j \land u = \text{read}(a, j) = \text{read}(a, j) = v \land u \neq v
\]

which is clearly unsatisfiable
More Complex Array Example for Checking Aliasing

original optimized

assert (i != k); int t = a[k];
a[i] = a[k]; a[i] = t;
a[j] = a[k]; a[j] = t;

i \neq k
b_1 = \text{write}(a, i, t) c_1 = \text{write}(a, i, t)
b_2 = \text{write}(b_1, j, s) c_2 = \text{write}(c_1, j, t)
s = \text{read}(b_1, k)

original \neq \text{optimized} \iff b_2 \neq c_2

b_2 \neq c_2 \iff \exists l \text{ with } \text{read}(b_2, l) \neq \text{read}(c_2, l)
Aliasing Example Continued 1

thus original \neq optimized iff

\[i \neq k \]
\[t = \text{read}(a, k) \]
\[b_1 = \text{write}(a, i, t) \]
\[b_2 = \text{write}(b_1, j, s) \]
\[c_1 = \text{write}(a, i, t) \]
\[c_2 = \text{write}(c_1, j, t) \]
\[s = \text{read}(b_1, k) \]
\[\text{read}(b_2, l) \neq \text{read}(c_2, l) \]

satisfiable
thus \textit{original} \neq \textit{optimized} iff

\[i \neq k\]
\[t = \text{read}(a, k)\]
\[b_1 = \text{write}(a, i, t)\]
\[b_2 = \text{write}(b_1, j, s)\]
\[c_1 = \text{write}(a, i, t)\]
\[c_2 = \text{write}(c_1, j, t)\]
\[s = \text{read}(b_1, k)\]
\[u = \text{read}(b_2, l)\]
\[v = \text{read}(c_2, l)\]
\[u \neq v\]

satisfiable
after eliminating c_2

\[
\begin{align*}
i &\neq k \\
t &\leftarrow \text{read}(a, k) \\
b_1 &\leftarrow \text{write}(a, i, t) \\
b_2 &\leftarrow \text{write}(b_1, j, s) \\
c_1 &\leftarrow \text{write}(a, i, t) \\
c_2 &\leftarrow \text{write}(c_1, j, t) \\
s &\leftarrow \text{read}(b_1, k) \\
u &\leftarrow \text{read}(b_2, l) \\
v &\leftarrow (l = j \ ? \ t : \text{read}(c_1, l)) \\
u &\neq v
\end{align*}
\]
after eliminating c_2, c_1

\[i \neq k \]
\[t = \text{read}(a, k) \]
\[b_1 = \text{write}(a, i, t) \]
\[b_2 = \text{write}(b_1, j, s) \]
\[c_1 = \text{write}(a, i, t) \]
\[c_2 = \text{write}(c_1, j, t) \]
\[s = \text{read}(b_1, k) \]
\[u = \text{read}(b_2, l) \]
\[v = (l = j \ ? \ t : (l = i \ ? \ t : \text{read}(a, l))) \]
\[u \neq v \]
after eliminating c_2, c_1, b_2

\[
\begin{align*}
 i \neq k \\
 t &= \text{read}(a, k) \\
 b_1 &= \text{write}(a, i, t) \\
 b_2 &= \text{write}(b_1, j, s) \\
 c_1 &= \text{write}(a, i, t) \\
 c_2 &= \text{write}(c_1, j, t) \\
 s &= \text{read}(b_1, k) \\
 u &= (l = j \ ? \ s : \text{read}(b_1, l)) \\
 v &= (l = j \ ? \ t : (l = i \ ? \ t : \text{read}(a, l))) \\
 u \neq v
\end{align*}
\]
after eliminating c_2, c_1, b_2, b_1

\[i \neq k \]
\[t = \text{read}(a, k) \]
\[b_1 = \text{write}(a, i, t) \]
\[b_2 = \text{write}(b_1, j, s) \]
\[c_1 = \text{write}(a, i, t) \]
\[c_2 = \text{write}(c_1, j, t) \]
\[s = (k = i \ ? \ t : \text{read}(a, k)) \]
\[u = (l = j \ ? \ s : (l = i \ ? \ t : \text{read}(a, l))) \]
\[v = (l = j \ ? \ t : (l = i \ ? \ t : \text{read}(a, l))) \]
\[u \neq v \]
result after “write” elimination

\[i \neq k \]
\[t = \text{read}(a, k) \]
\[s = (k = i \ ? \ t : \text{read}(a, k)) \]
\[u = (l = j \ ? \ s : (l = i \ ? \ t : \text{read}(a, l))) \]
\[v = (l = j \ ? \ t : (l = i \ ? \ t : \text{read}(a, l))) \]
\[u \neq v \]
Aliasing Example Continued 8

after eliminating conditionals (if-then-else)

\[i \neq k \]
\[t = \text{read}(a, k) \]
\[k = i \rightarrow s = t \]
\[k \neq i \rightarrow s = \text{read}(a, k) \]
\[l = j \rightarrow u = s \]
\[l \neq j \land l = i \rightarrow u = t \]
\[l \neq j \land l \neq i \rightarrow u = \text{read}(a, l) \]
\[l = j \rightarrow v = t \]
\[l \neq j \land l = i \rightarrow v = t \]
\[l \neq j \land l \neq i \rightarrow v = \text{read}(a, l) \]
\[u \neq v \]

now treat “read” as uninterpreted function (say \(f \))

check with lemmas-on-demand and congruence closure
Ackermann’s Reduction

formula in theory of uninterpreted functions with equality and disequality:

1. flatten terms by introducing new variables as before
 - remove nested function applications
 - equalities and disequalities have at least one variable on left or right side
2. instantiate congruence axiom in all possible ways:
 - replace all function applications $f(u)$ by new variable f^u
 - replace all function applications $f(u, v)$ by new variable $f^{u,v}$ etc.
3. if formula contains f^u and f^v add $u = v \rightarrow f^u = f^v$ as lemma etc.
4. use decision procedure for theory of equality and disequality
 - if the resulting formula after the first two steps contains n variables
 - then only need to consider domains with n elements
 - or bit-vectors of length $\lceil \log_2 n \rceil$ bits
 - allows eager encoding into SAT

“eagerly” generates all instantiations of the congruence axioms as lemmas
Example of Ackermann’s Reduction

we start with an already flattened formula

\[x = f(y) \land y = f(x) \land x \neq y \]

after second step

\[x = f^y \land y = f^x \land x \neq y \]

after adding lemmas in third step

\[x = f^y \land y = f^x \land x \neq y \land (x = y \rightarrow f^x = f^y) \]

resulting formula has 4 variables thus needs bit-vectors of length 2
Example of Ackermann’s Reduction to Bit-Vectors

$ cat ack.smt2
(set-logic QF_BV)
(declare-fun x () (_ BitVec 2))
(declare-fun y () (_ BitVec 2))
(declare-fun fx () (_ BitVec 2))
(declare-fun fy () (_ BitVec 2))
(assert (and (= x fy) (= y fx) (distinct x y) (=> (= x y) (= fx fy))))
(check-sat)
(exit)
$ boolector ack.smt2 -m -d
sat
x 0
y 3
fx 3
fy 0
Theory of Bit-Vectors

- allows “bit-precise” reasoning
 - captures semantics of low-level languages like assembler, C, C++, ...
 - Java / C# also use two-complement representations for int
 - modelling of hardware / circuits on the word-level (RTL)
 - important for security applications and precise test case generation

- many operations
 - logical operations, bit-wise operations (and, or)
 - equalities, inequalities, disequalities
 - shift, concatenation, slicing
 - addition, multiplication, division, modulo, ...

- main approach is reduction to SAT through *bit-blasting*
 - reduction of bit-vector operations similar to circuit synthesis
 - Ackermann’s Reduction only needs equality and disequality
Bit-Blasting Bit-Vector Equality

for each bit-vector equality \(u = v \) with \(u \) and \(v \) bit-vectors of width \(w \)

introduce new propositional variables for individual bits

\[
u_1, \ldots, u_w \quad v_1, \ldots, v_w
\]

replace \(u = v \) by new propositional variable \(e_{u=v} \)

add the propositional constraint

\[
e_{u=v} \leftrightarrow \bigwedge_{i=1}^{w} (u_i \leftrightarrow v_i)
\]

disequality \(u \neq v \) is replaced by \(\neg e_{u=v} \)

resulting formula satisfiable iff original formula satisfiable
Bit-Blasting Ackermann Example

\[x = f^y \land y = f^x \land x \neq y \land (x = y \rightarrow f^x = f^y) \]

now replacing the bit-vector equalities and the disequality by new \(e \) variables

\[e_{x = y} \land e_{y = f^x} \land \lnot e_{x = y} \land (e_{x = y} \rightarrow e_{f^x = f^y}) \]

and adding the equality constraints

\[
\begin{align*}
 e_{x = y} & \iff (x_1 \leftrightarrow f_1^y) \land (x_2 \leftrightarrow f_2^y) \\
 e_{y = f^x} & \iff (y_1 \leftrightarrow f_1^x) \land (y_2 \leftrightarrow f_2^x) \\
 e_{x = y} & \iff (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \\
 e_{f^x = f^y} & \iff (f_1^x \leftrightarrow f_1^y) \land (f_2^x \leftrightarrow f_2^y)
\end{align*}
\]

gives an “equi-satisfiable” formula which can be checked by SAT solver
Bit-Blasting Ackermann Example in Limboole Syntax

$ cat ackbitblasted.limboole

exfy & eyfx & !exy & (exy -> efxfy) &
(exfy <-> (x1 <-> fy1) & (x2 <-> fy2)) &
(eyfx <-> (y1 <-> fx1) & (y2 <-> fx2)) &
(exy <-> (x1 <-> y1) & (x2 <-> y2)) &
(efxfy <-> (fx1 <-> fy1) & (fx2 <-> fy2))

$ limboole ackbitblasted.limboole -s | grep -v SAT | sort

efxfy = 0
exfy = 1
exy = 0
eyfx = 1
fx1 = 0
fx2 = 1
fy1 = 1
fy2 = 1
x1 = 1
x2 = 1
y1 = 0
y2 = 1