
First Order Predicate Logic
Reasoning in Predicate Logic

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 1/40

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at
http://www.risc.jku.at

How does Mathematics “Work”?

Mathematics = “study of mathematical theories”

Math. theory = “collection of statements that follow from axioms”

Axiom = statement that is assumed to be true

Workflow:

1. Characterize objects of interest by distinguishing properties axioms.
2. Investigate what must hold under these circumstances theorems.

2.1 Investigate what might hold conjectures.
2.2 Justify conjectures proof.

A proof turns a conjecture into a theorem.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 2/40

http://www.risc.jku.at

Example: Natural Numbers with Addition
What characterizes the natural numbers with addition?

1. Objects of interest: 0, s, +. We write n+1 instead of s(n).
2. No natural number has 0 as its successor:

∀n : ¬(s(n) = 0). (P1)

3. Numbers with identical successor are identical:

∀m,n : s(m) = s(n)→m = n. (P2)

4. Adding 0 from right is neutral:

∀n : n+0 = n. (P3)

5. Adding successor gives successor:

∀m,n : n+ (m+1) = (n+m) +1. (P4)

6. If A holds for 0 and always for successors also, then A holds for all n:

(A[0/n]∧ (∀m : A[m/n]→ A[m+1/n]))→∀n : A. (P5)

Available for every formula A.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 3/40

http://www.risc.jku.at

Example: Natural Numbers with Addition

1. Observe:

0+1 = 0+ s(0) = s(0+0) = s(0) = 1
0+2 = 0+ s(1) = s(0+ s(0)) = s(s(0)) = 2
0+3 = 0+ s(2) = s(0+ s(1)) = s(s(0+ s(0))) = s(s(s(0))) = 3
0+4 = 0+ s(3) = . . . = s(s(s(s(0)))) = 4
etc.

2. Conjecture:
∀n : 0+n = n

3. Justify: Semantics of ∀: check all assignments for n, which would
need (in this case) infinitely many checks!

4. Proof: justify statement through a finite sequence of arguments, why
the statement must be true.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 4/40

http://www.risc.jku.at

Formal Reasoning: What Is a Proof?

?

6

Forward interpretation: Backward interpretation:

A proof starts from trivial proof
situations (can be proved easily),

A proof starts from the goal to
be proved,

progresses step-by-step

until it reaches the final situation,
where the goal is proved.

until it reaches trivial proof situ-
ations (can be proved easily).

Individual proof steps are guided by inference rules, which are denoted as

6forward S1 . . . Sn
S?

backward

Forward interpretation: Backward interpretation:

If S1, . . . ,Sn can be proved,
then also S can be proved.

In order to prove S,
we need to prove S1, . . . ,Sn.

S1, . . . ,Sn, and S: proof situations.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 5/40

http://www.risc.jku.at

Example

S,S1, . . . ,S6: sequents. Consider inference rules:

S2 S3R1: S1
R2: S4

S1R3: S
R4: S5

S4 S5R5: S2
R6: S6

S6R7: S3

We want to prove S.

R2:
S4

R4:
S5R5:

S2

R6:
S6R7:
S3R1:

S1R3:
S

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 6/40

http://www.risc.jku.at

Proof Generation vs. Proof Presentation

Proof generation: start with sequent to be proved, then work backwards.

Read and apply rules from bottom to top.

6R2:
S4

R4:
S5R5:

S2

R6:
S6R7:
S3R1:

S1R3:
S

Backward style proof presentation: In order to prove S we have to prove,
by R3, S1. For this, by R1, we have to

1. prove S2: by R5 we have to prove S4 and S5, which are guaranteed by
R2 and R4, respectively. Now we still have to

2. prove S3: by R7 it is sufficient to prove S6, which we know from R6.
q.e.d.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 7/40

http://www.risc.jku.at

Proof Generation vs. Proof Presentation

Proof presentation: often done in forward reasoning style, i.e. start with
known facts and work forward until the sequent to be proved is reached.

Read and apply rules from top to bottom.

?

R2:
S4

R4:
S5R5:

S2

R6:
S6R7:
S3R1:

S1R3:
S

Forward style proof presentation: We know S4 and S5 can be proved,
hence by R5, S2 can be proved. Furthermore we know that S6 can be
proved, hence by R7, also S3 can be proved. Together with S2, by R1, we
know that S1 can be proved, and therefore, by R3, also S. q.e.d.

Note: proof cannot be generated in this way.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 8/40

http://www.risc.jku.at

Formal Proofs

A formal proof can be seen as a tree, where

1. every node is a sequent,
2. if S1, . . . ,Sn are the children nodes of a node S, then there must be

an inference rule of the form S1 . . . Sn
S .

Special case n = 0: A leaf has 0 children, hence

for every leaf S in the tree there must be a rule S .

A formal proof of S is a formal proof with root S.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 9/40

http://www.risc.jku.at

A Sketch of a Simple Proof Generation Procedure

Input: S
Output: P s.t. P is a formal proof S.

P := tree containing only the root node S

Q := {S}

while Q not empty
choose a rule S1 . . . Sn

s such that s ∈ Q

replace s in Q by S1, . . . ,Sn

add S1, . . . ,Sn as children nodes of s in P
return P

Depending on 1) the rules and 2) the choice of the rule in the loop, the
procedure might not terminate or might not give a complete proof.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 10/40

http://www.risc.jku.at

Inference Rules: A Closer Look
Proof situations are written as sequents of the form H1, . . . ,Hk ` C , where

H1, . . . ,Hk ` C intuitively means the goal C follows from
the assumptions {H1, . . . ,Hk}.

Special case k = 0: there are no assumptions!

Proof situation ` C means: we have to prove that C is valid.

In the sequel, we describe inference rules as schematic patterns

K1 . . . ` C1 . . . Kn . . . ` Cnname:
K . . . ` C

where letters stand for individual formulas or terms and
“K . . .” stand for sequences of formulas.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 11/40

http://www.risc.jku.at

Choice of Inference Rules: A Closer Look
Convention: formula sequences are orderless, i.e.

K . . . ,F1∧F2 ` ¬G

expresses that

1. the assumptions contain a formula with outermost symbol “∧” and
2. the goal is a formula with outermost symbol “¬”.

In the “proof generation procedure” above:

choose a rule S1 . . . Sn
s such that s ∈ Q

means

choose a rule S1 . . . Sn
s such that s “matches” some q ∈ Q.

Now S1, . . . ,Sn actually mean variants of the schematic patterns, where
variables are replaced by those parts of s that are fixed by above
“matching” (see examples later).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 12/40

http://www.risc.jku.at

Proof Rules for Predicate Logic

One could give a (minimal) set of inference rules for first order predicate
logic, which can be shown to be sound and complete, i.e.

1. every formula, which has a formal proof, is also semantically true and
2. every semantically true formula has a formal proof.

 e.g. sequent calculus, Gentzen calculus, natural deduction calculus, etc.

Rather, we want to give proof rules that help in practical proving of
mathematical statements and checking of given proofs. Differences lie in
details.

We distinguish: structural rules, connective rules and quantifier rules.

For every binary logical connective and every standard quantifier, we give
at least one rule, where the connective or quantifier occurs as the
outermost symbol in the goal or one of the assumptions.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 13/40

http://www.risc.jku.at

Structural Rules

I If the goal is among the assumptions, the goal can be proved.
GoalAssum: K . . . ,G ` G

I Proof by contradiction:

K . . . ,¬G ` ⊥
A-¬: K . . . ` G

K . . . ` ¬AP-¬: K . . . ,A ` ⊥

I Add valid assumption:
K . . . ,V ` G

ValidAssum: if V is validK . . . ` G
I Drop any assumption:

K . . . ` GAnyAssum:
K . . . ,A ` G

I Add proved assumption — the cut-rule:
K . . . ` A K . . . ,A ` G

Cut: K . . . ` G

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 14/40

http://www.risc.jku.at

Example

√
2 ∈ Q, . . . ` ⊥

A-¬:
. . . `

√
2 6∈ Q

Natural language description of this proof step:

We have to prove that
√
2 is not rational. We do a proof by contradiction,

hence, we assume that
√
2 was rational and derive a contradiction.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 15/40

http://www.risc.jku.at

Connective Rules

I Prove parts of a conjunction separately:
K . . . ` F1 K . . . ` F2P-∧: K . . . ` F1∧F2

I Split conjunction in assumptions:
K . . . ,F1,F2 ` G

A-∧: K . . . ,F1∧F2 ` G
I Prove disjunction:

K . . . ,¬F1 ` F2
P-∨: K . . . ` F1∨F2

I Disjunction in assumptions prove by cases:
K . . . ,F1 ` G K . . . ,F2 ` G

A-∨: K . . . ,F1∨F2 ` G

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 16/40

http://www.risc.jku.at

Connective Rules
I Prove implication assume LHS and prove RHS:

K . . . ,F1 ` F2
P-→: K . . . ` F1→ F2

I Implication in assumptions “Modus Ponens” (MP):
K . . . ,F1,F1→ F2,F2 ` G

A-→/MP:
K . . . ,F1,F1→ F2 ` G

An implication alone in the KB is useless, it needs also the LHS!
I Prove equivalence by proving both directions:

K . . . ` F1→ F2 K . . . ` F2→ F1P-↔: K . . . ` F1↔ F2
I Equivalence in assumptions substitution:

K . . . [F2/F1],F1↔ F2 ` G
A-↔: K . . . ,F1↔ F2 ` G

K . . . ,F1↔ F2 ` G [F2/F1]
A-↔: K . . . ,F1↔ F2 ` G

φ [F2/F1]: replace some occurrences of (sub-)formula F1 by formula
F2 in formula or sequence of formulas φ .

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 17/40

http://www.risc.jku.at

Example

P1
even(m) ` G

P2
odd(m) ` G

A-∨:
even(m)∨odd(m) ` G

Natural language description of this proof step:

We already know that m is even or m is odd. Thus, we can distinguish the
two cases:

1. m is even: . . . (insert proof P1 here)
2. m is odd: . . . (insert proof P2 here)

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 18/40

http://www.risc.jku.at

Making our Lives Easier: Derivable Rules

K . . . ,A,B ` G
AnyAssum:

K . . . ,A,A→ B,B ` G
MP: K . . . ,A,A→ B ` G

ValidAssum:
if B is a logical consequence of A,
i.e. A→ B is validK . . . ,A ` G

This shows that with a combination of AnyAssum, Modus Ponens, and
DropAssum we can always add a logical consequence of an assumption to
the knowledge base. We can formulate this as a derivable rule

K . . . ,A,B ` G
ConsAssum: if B is a logical consequence of AK . . . ,A ` G

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 19/40

http://www.risc.jku.at

Making our Lives Easier: Derivable Rules

As soon as we have contradicting assumptions, the proof can be finished:

GoalAssum: K . . . ,¬A,¬G ` ¬A
P-¬: K . . . ,A,¬A,¬G ` ⊥
A-¬: K . . . ,A,¬A ` G

Derivable rule:

ContrAssum: K . . . ,A,¬A ` G

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 20/40

http://www.risc.jku.at

Example

Prove ((A→ (B∨C))∧¬C)→ (A→ B),

where A,B, and C are abbreviations for complex predicate logic formulas.

Develop proof tree top-down with root on top (convenient in practice).

` ((A→ (B∨C))∧¬C)→ (A→ B)
P-→: ↓

(A→ (B∨C))∧¬C ` A→ B
A-∧:

A→ (B∨C),¬C ` A→ B
P-→:

A→ (B∨C),¬C ,A ` B
MP:

A→ (B∨C),¬C ,A,B∨C ` B
A-∨:

. . . ,¬C ,A,B ` B
GoalAssum:

. . . ,¬C ,A,C ` B
ContrAssum:

Compare to sequent calculus for propositional logic!

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 21/40

http://www.risc.jku.at

Backward Chaining

Modus ponens: may generate “useless knowledge”.

Backward chaining: use implications that “lead to the goal”.

Derivable rule:

K . . . ` FBackChain: K . . . ,F → G ` G

Justified by:

K . . . ` FAnyAssum:
K . . . ,F → G ` F

GoalAssum: K . . . ,F → G ,F ,G ` G
MP: K . . . ,F → G ,F ` G

Cut: K . . . ,F → G ` G

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 22/40

http://www.risc.jku.at

Example

. . . ` even(m)
BackChain:

. . . ,even(m)→ even(m2) ` even(m2)

Natural language description of this proof step:

We know that if m is even then also m2 is even. Therefore, in order to
prove that m2 is even, it is sufficient to show that m is even.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 23/40

http://www.risc.jku.at

Equality Rules

I t = t can be proved:
P-=: K . . . ` t = t

I Equality in assumptions substitution:

K . . . [t2/t1], t1 = t2 ` G
A-=: K . . . , t1 = t2 ` G

K . . . , t1 = t2 ` G [t2/t1]
A-=: K . . . , t1 = t2 ` G

Γ[t2/t1]: replace some occurrences of term t1 by term t2 in formula
or sequence of formulas Γ. If t1 is a variable, then replace only free
occurrences!

The rules A-↔ and A-= allow to use all known logical equivalences (e.g.
De-Morgan rules, etc.) and arithmetic laws (e.g. distributivity, etc.) for
rewriting anywhere in a proof. Typically, not all known rules will be listed
explicitly in the assumptions. They may be added through the rule
ValidAssum.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 24/40

http://www.risc.jku.at

Example

. . . ,even(m),n = m2 ` even(m2)
A-=:

. . . ,even(m),n = m2 ` even(n)

Natural language description of this proof step:

We have to prove that n is even. Since we know n = m2, it suffices to
prove that m2 is even.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 25/40

http://www.risc.jku.at

Quantifier Rules: Universal Quantifier

I Prove for all x choose x̄ “arbitrary but fixed” (skolemize):

K . . . ` F [x̄/x]
P-∀: if x̄ does not occur in K . . . ,FK . . . ` ∀x : F

I What is “arbitrary but fixed”?
I fixed: x̄ is constant in contrast to x , which is a variable.
I arbitrary: nothing is known about x̄ , it is a completely new symbol,
which does not occur in the current proof situation. It is arbitrary in
the sense that we could have taken any other one as well.

I Justification: for all assignments for x we see that F is true by the
argument that works for x̄ .

I Instantiate universal assumption:
K . . . ,∀x : F ,F [t/x] ` G

A-∀: K . . . ,∀x : F ` G
I ∀x : F stays in the assumptions multiple instantiations.
I Knowledge generating rule.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 26/40

http://www.risc.jku.at

Example

. . . ` even(n̄)→ even(n̄2)
P-∀:

. . . ` ∀n : even(n)→ even(n2)

Natural language description of this proof step:

In order to prove that the square of any even number n is again even, we
take an arbitrary but fixed natural number n̄ and show
even(n̄)→ even(n̄2).

. . . ,∀n : even(n)→ even(n2),even(m)→ even(m2) ` . . .
A-∀:

. . . ,∀n : even(n)→ even(n2) ` . . .

Natural language description of this proof step:

We know that the square of any even number is again even. Hence, this
holds for a particular number m also, i.e. if m is even then also m2 must
be even.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 27/40

http://www.risc.jku.at

Quantifier Rules: Existential Quantifier

I Prove there exists x find a witness t (instantiate):

K . . . ` F [t/x]
P-∃: K . . . ` ∃x : F

I How to find the witness term t?
I Skolemize existential assumption:

K . . . ,F [x̄/x] ` G
A-∃: if x̄ does not occur in K . . . ,F ,GK . . . ,∃x : F ` G

I x̄ is “arbitrary but fixed”.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 28/40

http://www.risc.jku.at

Example

. . . ` 2 ·2a = 4aP-∃:

. . . ` ∃m : 2m = 4a

Natural language description of this proof step:

We have to prove that there exists an m with 2m = 4a. Let now m := 2a,
thus, we have to show 2 ·2a = 4a.

. . . , m̄2

n̄2 = 2 ` . . .
A-∃:

. . . ,∃m,n : m2

n2 = 2 ` . . .

Natural language description of this proof step:

We know there exist m and n such that m2

n2 = 2. Thus, we may choose m̄
and n̄ arbitrary but fixed with m̄2

n̄2 = 2.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 29/40

http://www.risc.jku.at

Rules for Expanding Definitions
Typically, we assume that definitions are available in a “global context”
they are not explicit assumptions in the knowledge base.

Moreover, we assume that the validity conditions have been verified for
each definition each defintion corresponds to a valid formula add
this formula to the knowledge base and and use available proof rules.

Example: derivable rule for expanding explicit predicate definition.

K . . . [F [z/x]/p(z)] ` G
ExpandDef:

p(x) :⇔ F
p(z) occurs in K . . .K . . . ` G

Justified by:

K . . . [F [z/x]/p(z)] ` G
AnyAssum:

K . . . [F [z/x]/p(z)],p(z)↔ F [z/x] ` G
A-↔

K . . . ,p(z)↔ F [z/x] ` G
A-∀:

K . . . ,∀x : p(x)↔ F ` G
ValidAssum:

p(x) :⇔ F
p(z) occurs in K . . .K . . . ` G

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 30/40

http://www.risc.jku.at

Rules for Expanding Definitions

Using analogous justifications we can derive rules for applying predicate
definitions in the goal and for applying explicit function definitions in goal
and knowledge base.

K . . . ` G [F [z/x]/p(z)]
ExpandDef:

p(x) :⇔ F
p(z) occurs in GK . . . ` G

K . . . [t[z/x]/f (z)] ` G
ExpandDef:

f (x) := t
f (z) occurs in K . . .K . . . ` G

K . . . ` G [t[z/x]/f (z)]
ExpandDef:

f (x) := t
f (z) occurs in GK . . . ` G

Analogous: Rules for definitions in more than one variable.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 31/40

http://www.risc.jku.at

Example

If a divides b then it also divides every multiple of b.

Definition: a divides b :⇔∃t ∈ N : b = t ·a

` ∀a,b,s ∈ N : a divides b→ a divides s ·b
P-∀: ↓

` ā, b̄, s̄ ∈ N→ (ā divides b̄→ ā divides s̄ · b̄)
P-→:

ā, b̄, s̄ ∈ N ` ā divides b̄→ ā divides s̄ · b̄
P-→:

ā, b̄, s̄ ∈ N, ā divides b̄ ` ā divides s̄ · b̄
(∗):

ā, b̄, s̄ ∈ N, ā divides b̄ ` ∃t ∈ N : s̄ · b̄ = t · ā
(∗∗):

ā, b̄, s̄ ∈ N,∃t ∈ N : b̄ = t · ā ` ∃t ∈ N : s̄ · b̄ = t · ā
A-∃, A-∧:

ā, b̄, s̄, t̄ ∈ N, b̄ = t̄ · ā ` ∃t ∈ N : s̄ · b̄ = t · ā
A-=:

ā, b̄, s̄, t̄ ∈ N, b̄ = t̄ · ā ` ∃t ∈ N : s̄ · t̄ · ā = t · ā
P-∃:

ā, b̄, s̄, t̄ ∈ N, b̄ = t̄ · ā ` s̄ · t̄ ∈ N∧ s̄ · t̄ · ā = s̄ · t̄ · ā
P-∧:

. . . , s̄, t̄ ∈ N ` s̄ · t̄ ∈ N . . . ` s̄ · t̄ · ā = s̄ · t̄ · āP-=:

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 32/40

http://www.risc.jku.at

Example: Explanation

In the example: apply definition of “divides”

∀a,b : a divides b↔∃t ∈ N : b = t ·a (1)

to the goal “ā divides s̄ · b̄” (instantiate [a 7→ ā,b 7→ s̄ · b̄]).

ā, b̄, s̄ ∈ N, ā divides b̄ ` ā divides s̄ · b̄
(∗): ↓

ā, b̄, s̄ ∈ N, ā divides b̄ ` ∃t ∈ N : s̄ · b̄ = t · ā

Apply (1) to the assumption “ā divides b̄” (instantiate [a 7→ ā,b 7→ b̄]):

ā, b̄, s̄ ∈ N, ā divides b̄ ` ∃t ∈ N : s̄ · b̄ = t · ā
(∗∗): ↓

ā, b̄, s̄ ∈ N,∃t ∈ N : b̄ = t · ā ` ∃t ∈ N : s̄ · b̄ = t · ā

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 33/40

http://www.risc.jku.at

Rules for Implicit Function Definitions
Implicit definitions are slightly more tricky . . .

K . . . [ȳ/f (z)],
F [z/x][ȳ/y], ȳ ∈ T ` G [ȳ/f (z)]

ImpDef:
f (x) := such y ∈ T : F
f (z) occurs in K . . . ,GK . . . ,∃y ∈ T : F [z/x] ` G

Note, that ȳ must not occur in K . . . ,F ,G .

In words: if f (z) is defined, then we can introduce a ȳ for f (z) and ȳ has
the characteristic property from the definition for f (z). We may replace
f (z) by ȳ anywhere in the proof.

K . . . [ȳ/f (z)],
F [z/x][ȳ/y], ȳ ∈ T ` G [ȳ/f (z)]

ImpDefUn:
f (x) := the y ∈ T : F
f (z) occurs in K . . . ,GK . . . ` G

K . . . ` F [z/x][t/y]
ImpDefUnEq: f (x) := the y ∈ T : F

K . . . , t ∈ T ` f (z) = t

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 34/40

http://www.risc.jku.at

Example
Prove that for every bijective function f : A→ B we have (f −1)−1 = f .

Inverse function exists and is unique (bijective!) implicit definition:

f −1 := the g : B→ A : (f ◦g = idB)∧ (g ◦ f = idA)

` ∀A,B, f : A→ B : (f −1)−1 = f
P-∀, P-→: ↓

f̄ : Ā→ B̄ ` (f̄ −1)−1 = f̄
ImpDefUn, A-∧:

f̄ : Ā→ B̄, ḡ : B̄→ Ā, f̄ ◦ ḡ = idB̄ , ḡ ◦ f̄ = idĀ ` ḡ−1 = f̄
ImpDefUnEq:

f̄ : Ā→ B̄, ḡ : B̄→ Ā,
f̄ ◦ ḡ = idB̄ , ḡ ◦ f̄ = idĀ

` (ḡ ◦ f̄ = idĀ)∧ (f̄ ◦ ḡ = idB̄)

P-∧:
K ` ḡ ◦ f̄ = idĀ K ` f̄ ◦ ḡ = idB̄

In both cases the knowledge base K contains the goal to be proved.

Be careful with instantiation in second application of (ImpDef).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 35/40

http://www.risc.jku.at

Natural Language Presentation of Proofs

1. Do not mention all steps,
2. combine several steps into one (derivable rules!),
3. use same names for arbitrary but fixed constants, etc.

Theorem: If a divides b then it also divides every multiple of b.

Proof: Assume a,b,s ∈ N arbitrary but fixed such that a divides b. We
have to show that a divides s ·b, i.e. ∃t ∈ N : s ·b = t ·a. Since a divides
b, we know that b = t̄ ·a for some t̄ ∈ N, thus, we have to find t ∈ N s.t.
s · t̄ ·a = t ·a. Let now t := s · t̄ ∈ N, we have to show s · t̄ ·a = s · t̄ ·a.
q.e.d.

Every sentence in the proof is justified by one or more proof rules. Trivial
steps (e.g. split conjunction in knowledge base) not mentioned explicitly.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 36/40

http://www.risc.jku.at

Example
Every even natural number is the sum of two odd numbers with a
difference less or equal than 2, i.e.

∀even(n) : ∃odd(k),odd(l) : n = k + l ∧k− l ≤ 2

Let n be arbitrary but fixed and assume
n is even.

P-∀, P-→

Hence, n = 2m. ExpandDef, A-∃
∀n : odd(n)∨ even(n), A-∀

Case m is odd: odd(m)∨ even(m), A-∨
Let k = l := m. Then k + l = 2m = n, P-∃
thus, n is the sum of two odd numbers
k and l s.t. k− l = 0≤ 2.

GoalAssum

Case m is even: A-∨
Let k := m+1 and l := m−1. P-∃
Then k + l = m+ 1+m− 1 = 2m = n,
thus, n is the sum of two odd numbers
k and l s.t. k− l = 2≤ 2.

GoalAssum

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 37/40

http://www.risc.jku.at

Drinker’s Paradox
In every non-empty bar there is one person such that if (s)he drinks, then
everybody drinks.

∃x : (D(x)→∀y : D(y)) (2)

Apply P-∃: no chance.

Apply proof by contradiction, assume ¬∃x : (D(x)→∀y : D(y)), i.e.

∀x : (D(x)∧∃y : ¬D(y)) (3)

Since the bar is not empty, there is at least one person in the bar, call
her/him p. Since (3) holds for all x , it must also hold for p
(instantiation!), thus D(p) and also ∃y : ¬D(y). So there exists a person,
call her/him q, such that

¬D(q). (4)

But (3) must hold for q also, i.e. D(q)∧¬∀y : D(y), thus

D(q). (5)

(5) contradicts (4), so the original statement (2) is proven.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 38/40

http://www.risc.jku.at

Example
Prove over the domain N: ∀n : 0+n = n.

∀n : n+0 = n. (P3)

∀m,n : n+ (m+1) = (n+m) +1. (P4)

(A[0/n]∧ (∀m : A[m/n]→ A[m+1/n]))→∀n : A (P5)

In this case for A≡ 0+n = n: By (BackChain), in order to prove
∀n : 0+n = n, it is sufficient to prove

A[0/n]∧ (∀m : A[m/n]→ A[m+1/n]).

Using (P-∧) we have to

1. Prove A[0/n], i.e. 0+0 = 0. Instantiation of (P3) by [n 7→ 0] yields
0+0 = 0, hence we are done (GoalAssum).

2. Prove ∀m : A[m/n]→ A[m+1/n], i.e. for arbitrary but fixed m, we
assume 0+m = m (∗) and show 0+ (m+1) = m+1. Now,

0+ (m+1)
(P4)
= (0+m) +1 (∗)

= m+1.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 39/40

http://www.risc.jku.at

Summary

I Proof rules are purely syntactic proving can be viewed as a
syntactic process.

I When doing “real mathematical proofs”:
I Obey the syntactic structure of the involved formulas.
I Apply rules “matching” the current proof situation.
I Think of the proof as a tree and try to “close” all branches.
I Instead of “waiting for the brilliant idea” that solves a proof problem,
better “stupidly” apply the rules.

I You will be surprised, in how many proofs you will succeed this way!

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 40/40

http://www.risc.jku.at

