
First Order Predicate Logic
Formal Semantics and Related Notions

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 1/1

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at
http://www.risc.jku.at

Formal Semantics

Up to now, our presentation of predicate logic formulas, their manipulation
and proving, was mainly based on the form (syntax) of the formulas; this
leaves many questions open.
I Equivalence of formulas:

I What exactly does a formula mean, e.g., when do two syntactically
different formulas express the same fact?

I Soundness and completeness of proving rules:
I Proving rules allow by only considering the form of formulas to judge
that some formula is a consequence of some other formulas.

I But are the derived judgements really always true, i.e., are the rules
really sound?

I Furthermore, can all true judgements be derived, i.e., are the rules
also complete?

We will answer these questions by underpinning our previous presentation
with a formal definition of the meaning (semantics) of formulas.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 2/1

http://www.risc.jku.at

Formal Semantics
The meaning of a predicate logic formula depends on the following entities.
I Domain D

I A non-empty set, the universe about which the formula talks.

D = N.
I Interpretation I of all function and predicate symbols

I Constants: For every constant c, I(c) denotes an element of D, i.e.,
I(c) ∈D.

I Functions: For every function symbol f with arity n > 0, I(f) denotes
an n-ary function on D, i.e., I(f) : Dn→D.

I Predicates: For every predicate symbol p with arity n > 0, I(p)
denotes an n-ary predicate (relation) on D, i.e., I(p)⊆Dn.

I = [0 7→ zero,+ 7→ add, < 7→ less-than, . . .]

I Assignment a : Var → D
I A function that maps every variable x to a value a(x) in this domain.

a = [x 7→ 1,y 7→ 0,z 7→ 3, . . .]

The pair M = (D, I) is also called a structure.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 3/1

http://www.risc.jku.at

The Semantics of Terms

[t] d ∈ DD, I ,a

I Term semantics [t]D,I
a ∈ D

I Given D, I,a, the semantics of term t is a value in D.
I This value is defined by structural induction on t.

t ::= x | c | f (t1, . . . , tn)

I [x]D,I
a := a(x)
I The semantics of a variable is the value given by the assignment.

I [c]D,I
a := I(c)
I The semantics of a constant is the value given by the interpretation.

I [f (t1, . . . , tn)]D,I
a := I(f)([t1]D,I

a , . . . , [tn]D,I
a)

I The semantics of a function application is the result of the
interpretation of the function symbol applied to the values of the
argument terms.

The recursive definition of a function evaluating a term.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 4/1

http://www.risc.jku.at

Example

D = N = {zero,one, two, three, . . .}
a = [x 7→ one,y 7→ two, . . .]
I = [0 7→ zero,+ 7→ add , . . .]

[x + (y +0)]D,I
a = add([x]D,I

a , [y +0]D,I
a)

= add(a(x), [y +0]D,I
a)

= add(one, [y +0]D,I
a)

= add(one,add([y]D,I
a , [0]D,I

a))

= add(one,add(a(y), I(0))

= add(one,add(two,zero))

= add(one, two)

= three

The meaning of the term with the “usual” interpretation.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 5/1

http://www.risc.jku.at

Example

D = P(N) = { /0,{zero},{one},{two}, . . . ,{zero,one}, . . .}
a = [x 7→ {one},y 7→ {two}, . . .]
I = [0 7→ /0,+ 7→ union, . . .]

[x + (y +0)]D,I
a = union([x]D,I

a , [y +0]D,I
a)

= union(a(x), [y +0]D,I
a)

= union({one}, [y +0]D,I
a)

= union({one},union([y]D,I
a , [0]D,I

a))

= union({one},union(a(y), I(0))

= union({one},union({two},emptyset))

= union({one},{two})
= {one, two}

The meaning of the term with another interpretation.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 6/1

http://www.risc.jku.at

The Semantics of Formulas

[F] true, falseD, I ,a

I Formula semantics [F]D,I
a ∈ {true, false}

I Given D, I,a, the semantics of term T is a truth value.
I This value is defined by structural induction on F .

F := p(t1, . . . , tn) | > | ⊥
| ¬F | F1∧F2 | F1∨F2 | F1→ F2 | F1↔ F2

| ∀x : F | ∃x : F | . . .

I [p(t1, . . . , tn)]D,I
a := I(p)([t1]D,I

a , . . . , [tn]D,I
a)

I The semantics of a atomic formula is the result of the interpretation
of the predicate symbol applied to the values of the argument terms.

I [>]D,I
a := true, [⊥]D,I

a := false
And now for the non-atomic formulas.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 7/1

http://www.risc.jku.at

The Semantics of Propositional Formulas

I [¬F]D,I
a :=

{
true if [F]D,I

a = false
false else

I [F1∧F2]D,I
a :=

{
true if [F1]D,I

a = [F2]D,I
a = true

false else

I [F1∨F2]D,I
a :=

{
false if [F1]D,I

a = [F2]D,I
a = false

true else

I [F1→ F2]D,I
a :=

{
false if [F1]D,I

a = true and [F2]D,I
a = false

true else

I [F1↔ F2]D,I
a :=

{
true if [F1]D,I

a = [F2]D,I
a

false else

The semantics coincides here with that of propositional logic.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 8/1

http://www.risc.jku.at

The Semantics of Quantified Formulas

I [∀x : F]D,I
a :=

{
true if [F]D,I

a[x 7→d] = true for all d ∈ D
false else

I Formula is true, if body F is true for every value of the domain
assigned to x .

I [∃x : F]D,I
a :=

{
true if [F]D,I

a[x 7→d] = true for some d ∈ D
false else

I Formula is true, if body F is true for at least one value of the domain
assigned to x .

a[x 7→ d](y) =

{
d if x = y
a(y) else

The core of the semantics.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 9/1

http://www.risc.jku.at

Example
D = N3 = {zero,one, two}
a = [x 7→ one,y 7→ two,z 7→ two, . . .], I = [0 7→ zero,+ 7→ add , . . .]

[∀x : ∃y : x + y = z]D,I
a = true

I [∃y : x + y = z]D,I
a[x 7→zero] = true

I [x +y = z]D,I
a[x 7→zero,y 7→zero] = false

I [x +y = z]D,I
a[x 7→zero,y 7→one] = false

I [x +y = z]D,I
a[x 7→zero,y 7→two] = true

I [∃y : x + y = z]D,I
a[x 7→one] = true

I [x +y = z]D,I
a[x 7→one,y 7→zero] = false

I [x +y = z]D,I
a[x 7→one,y 7→one] = true

I [x +y = z]D,I
a[x 7→one,y 7→two] = false

I [∃y : x + y = z]D,I
a[x 7→two] = true

I [x +y = z]D,I
a[x 7→two,y 7→zero] = true

I [x +y = z]D,I
a[x 7→two,y 7→one] = false

I [x +y = z]D,I
a[x 7→two,y 7→two] = false

The systematic investigation of respectively search for assignments.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 10/1

http://www.risc.jku.at

Semantic Notions
Let F denote formulas, M structures, a assignments.
I F is satisfiable, if [F]M

a = true for some M and a.
p(0,x) is satisfiable; q(x)∧¬q(x) is not.

I M is a model of F (short: M |= F), if [F]M
a = true for all a.

(N, [0 7→ zero,p 7→ less-equal]) |= p(0,x)

I F is valid (short: |= F), if M |= F for all M.
|= p(x)∧ (p(x)→ q(x))→ q(x)

I F is satisfiable, if ¬F is not valid.
I F is valid, if ¬F is not satisfiable.

I F is a logical consequence of formula set Γ (short: Γ |= F), if for all
M and a, the following is true:

If [G]M
a = true for every G in Γ, then also [F]M

a = true.

p(x),p(x)→ q(x) |= q(x)

I F1 is a logical consequence of formula F2, if {F2} |= F1.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 11/1

http://www.risc.jku.at

Logical Equivalence
We are now going to address the first question stated in the beginning.
I Definition: two formulas F1 and F2 are logically equivalent (short:

F1⇔ F2), if F1 |= F2 and F2 |= F1.
I Lemma: if F ⇔ F ′ and G ⇔ G ′, then

¬F ⇔¬F ′

F ∧G ⇔ F ′∧G ′

F ∨G ⇔ F ′∨G ′

F → G ⇔ F ′→ G ′

F ↔ G ⇔ F ′↔ G ′

∀x : F ⇔∀x : F ′

∃x : F ⇔∃x : F ′

Logically equivalent formulas can be substituted in any context without
affecting the logical equivalence of the result (since F ⇔ G iff F ↔ G is
valid, this justifies the proof rule A-↔).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 12/1

http://www.risc.jku.at

Expressiveness of First-Order Logic
I Variables denote elements of the domain, thus no quantification is

possible over functions and predicates of the domain.
This would require second-order predicate logic.

I Nevertheless we express in first-order logic statements such as
∀A,B, f ∈ A→ B : f is bijective→∃g ∈ B→ A : ∀x ∈ B : f (g(x)) = x

I This is possible because formulas are usually interpreted over the
domain of sets, i.e., all variables denote sets:

A→ B := {S ⊆ A×B |
(∀a ∈ A : ∃b ∈ B : (a,b) ∈ S) ∧
(∀a,a′,b : (a,b) ∈ S ∧ (a′,b) ∈ S → a = a′)}

I Terms like f (g(x)) involve a hidden binary function “apply”
f (g(x)) apply(f ,apply(g ,x))

which denotes “function application”:
apply(f ,x) := the y : (x ,y) ∈ f

First-order predicate logic over the domain of sets is the “working horse” of
mathematics; virtually all of mathematics is formulated in this framework.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 13/1

http://www.risc.jku.at

Soundness and Completeness of First-Order Logic

Now we turn our attention to the second question.

Completeness Theorem (Kurt Gödel, 1929): First order predicate logic has
a proof calculus for which the following holds:
I Soundness: if by the rules of the calculus a conclusion F can be

derived from a set of assumptions Γ (Γ ` F), then F is a logical
consequence of Γ (Γ |= F).

I Completeness: if F is a logical consequence of Γ (Γ |= F), then by the
rules of the calculus F can be derived from Γ (Γ ` F).

No logic that is stronger (more expressive) than first order predicate logic
has a proof calculus that also enjoys both soundness and completeness.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 14/1

http://www.risc.jku.at

Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth
of every formula is algorithmically decidable.
I Undecidability (Church/Turing, 1936/1937): there does not exist any

algorithm that for given formula set Γ and formula F always
terminates and says whether Γ |= F holds or not.

I Semidecidability: but there exists an algorithm, that for given Γ
and F , if Γ |= F , detects this fact in a finite amount of time.

This algorithm searches for a proof of Γ ` F in a complete
proof calculus; if such a proof exists, it will eventually detect
it; however, if no such proof exists, the search runs forever.

Automatic proof search is not able to detect that a formula is not true.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 15/1

http://www.risc.jku.at

Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas.
I Incompleteness Theorem (Kurt Gödel, 1931): it is in no sound logic

possible to prove all true arithmetic statements (i.e., all statements
about natural numbers with addition and multiplication).

I To adequately characterize N, the (infinite) axiom scheme of
mathematical induction has to be added.

I Corollary: in every sound formal system that is sufficiently rich there
are statements that can neither be proved nor disproved.

In practice, complete reasoners for first-order logic are often supported by
(complete or incomplete) reasoners for special theories.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 16/1

http://www.risc.jku.at

