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Formal Semantics

Up to now, our presentation of predicate logic formulas, their manipulation
and proving, was mainly based on the form (syntax) of the formulas; this
leaves many questions open.

» Equivalence of formulas:

> What exactly does a formula mean, e.g., when do two syntactically

different formulas express the same fact?
» Soundness and completeness of proving rules:

» Proving rules allow by only considering the form of formulas to judge
that some formula is a consequence of some other formulas.

» But are the derived judgements really always true, i.e., are the rules
really sound?

» Furthermore, can all true judgements be derived, i.e., are the rules
also complete?

We will answer these questions by underpinning our previous presentation
with a formal definition of the meaning (semantics) of formulas.
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Formal Semantics
The meaning of a predicate logic formula depends on the following entities.

» Domain D
> A non-empty set, the universe about which the formula talks.

D =N.

» Interpretation / of all function and predicate symbols
» Constants: For every constant ¢, /(c) denotes an element of D, i.e.,
I(c)eD.
» Functions: For every function symbol f with arity n > 0, I(f) denotes
an n-ary function on D, i.e., I(f): D" — D.
» Predicates: For every predicate symbol p with arity n >0, /(p)
denotes an n-ary predicate (relation) on D, i.e., I(p) C D".

I = [0~ zero,+ + add, < + less-than,...]

» Assignment a: Var — D
» A function that maps every variable x to a value a(x) in this domain.

a=[x—1y—0,z—3..]

The pair M = (D, 1) is also called a structure.
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The Semantics of Terms

D,l,a —{ [t] —>d €D

» Term semantics [t]aD’l eD
> Given D, |, a, the semantics of term t is a value in D.
> This value is defined by structural induction on t.

t o= x| c|f(te,...,tn)

[x]15 = a(x)

» The semantics of a variable is the value given by the assignment.
D,
(12 = I(c)
» The semantics of a constant is the value given by the interpretation.

[t ta)12 = 1) (015, 8215

» The semantics of a function application is the result of the
interpretation of the function symbol applied to the values of the

v

v

v

argument terms. A\
The recursive definition of a function evaluating a term. W
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Example
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D = N = {zero, one, two, three, ...}
a= x> one,y — two,...]
I =0+ zero,+ — add,.. ]

[x+(y+0)12" = add([x15", [y +012)
add(a(x), y+0] )
add(one,[y +012"")

(
(a
(
= add(one,add([y12!,[0]
(
(
(

= add(one, add(a(y), 1(0))
= add(one, add(two, zero))
= add(one, two)

= three

The meaning of the term with the “usual” interpretation.

)
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Example
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D ="P(N) = {0,{zero},{one}, {two},...,{zero,one},...}
a=[x— {one},y — {two},.. ]
I =0+ 0,4 — union,...]

[x+(y+0)12" = union([x]12!, [y + 012
= union(a(x),[y +012)
= union({one},[y +012")
= union({one}, union([y12"',[01
= union({one}, union(a(y), (0))
(

= union({one}, union({two}, emptyset))

= union({one}, {two})

= {one, two}

The meaning of the term with another interpretation.

")
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The Semantics of Formulas

D,l,a —{ [ F] —» true, false

» Formula semantics [F]5 € {true, false}

» Given D, I, a, the semantics of term T is a truth value.
> This value is defined by structural induction on F.

F =p(ty,....,tn) | T | L
|—|F|F1/\F2 | FVF | FL— F | F+ F
|Vx:F|3x:F| ...

> [p(ts,....t) 15 = 1(p) (0157, [ta15)

» The semantics of a atomic formula is the result of the interpretation
of the predicate symbol applied to the values of the argument terms.

> [T15 = true,[ 11D := false e
And now for the non-atomic formulas. N
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The Semantics of Propositional Formulas

v

[ﬁF]D"l _ ) true if [F]?’I = false
2 false else

true else

» [AARID = true  if [F1]" = [F]5" = true
false else
false if [F12 =[F12 =
» [AVAR]Y = {tiusee Iels[e 11a [F21a false
false if [F1]15" = true and [F>]5 = false
> [F1—>F2]3D’I::{ [ l]a [ 21a

true if [F1]12 =[F]5/

> [F o RIY =
false else

The semantics coincides here with that of propositional logic.
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The Semantics of Quantified Formulas

. D,l _
. [vx: F]?'I . {true if [F]a[x»—>d] = true for all d € D

false else

> Formula is true, if body F is true for every value of the domain
assigned to x.

: D,
. [Hx:F]aD" :: {true |f[F]a[;<Hd] = true for some d € D

false else

» Formula is true, if body F is true for at least one value of the domain
assigned to x.

ol d)(y) = {d Fx=y

a(y) else

The core of the semantics.
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Example
D = N3 = {zero, one, two}

a=[x— one,y — two,z — two,...], | = [0+ zero,+ — add,...]

[Vx:3y: x+y= z]aD’I = true

» [y :x+y= z]a[XHzerO] true
» Ix+y= z]a[x>—>zero yrszero| = false
* Ixt+y= z]a[x>—>zero y—rone] — = false
»Ix+y= z]a[x>—>zero,y>—>two] true

> [Ty x—l—y—z]a[x'_wne]—true
> Ix+y= z]a[x>—>one y—>zero] = false
» Ix+y= z]a[x>—>one y—rone] — = true

» Ix+y= z]a[x>—>one y—two] = false

> [Ty :x+y= ]a[XHtWO] true
i [X ty= z]a[XHtwo,szero] = true
DI .
» Ix+y= ]a[thwo y—rone] — false

i [X+y - z]a[x>—>two yrtwo) = false

The systematic investigation of respectively search for assignments.
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Semantic Notions
Let F denote formulas, M structures, a assignments.

» F is satisfiable, if [F]M = true for some M and a.

p(0,x) is satisfiable; q(x) A—q(x) is not.

» M is a model of F (short: M = F), if [F]IM = true for all a.

(N, [0 — zero, p — less-equal]) = p(0, x)

» Fis valid (short: = F), if M = F for all M.
= p(x) A (p(x) = q(x)) = q(x)
» F is satisfiable, if —=F is not valid.
» F is valid, if =F is not satisfiable.

> Fis a logical consequence of formula set I (short: T |=
M and a, the following is true:

If[GIM = true for every G in T, then also [F1Y =

p(x),p(x) = q(x) = q(x)

> F7 is a logical consequence of formula Fp, if {F2} | Fi.
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Logical Equivalence

We are now going to address the first question stated in the beginning.
» Definition: two formulas F; and F, are logically equivalent (short:
F1 = Fg), if F1 ': F2 and F2 ': F1.
» Lemma: if F& F' and G < G/, then

—\F<:>—|F/
FAG& F' NG
FVG& F'vGE
F—-G&F -G
F&GeF o6
Vx: F & Vx: F
Ix:Fe3Ix: F

Logically equivalent formulas can be substituted in any context without
affecting the logical equivalence of the result (since F < G iff F <> G is

valid, this justifies the proof rule A-<). N\,
.
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Expressiveness of First-Order Logic

> Variables denote elements of the domain, thus no quantification is
possible over functions and predicates of the domain.

This would require second-order predicate logic.
> Nevertheless we express in first-order logic statements such as
VA,B,f € A— B:f is bijective - 3g€ B— A:Vx € B: f(g(x)) =x

» This is possible because formulas are usually interpreted over the
domain of sets, i.e., all variables denote sets:

A= B:={SCAxB|
(Vac A:3beB:(a,b)eS) A
(Va,d',b:(a,b) e SA(a',b)eS—a=2")}

» Terms like f(g(x)) involve a hidden binary function “apply”
f(g(x)) ~ apply(f,apply(g,x))
which denotes “function application”:
apply(f,x):=the y: (x,y) e f

First-order predicate logic over the domain of sets is the “working horse" of -ME.

mathematics; virtually all of mathematics is formulated in this framework. ™
13/1
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Soundness and Completeness of First-Order Logic

Now we turn our attention to the second question.

Completeness Theorem (Kurt Godel, 1929): First order predicate logic has
a proof calculus for which the following holds:

» Soundness: if by the rules of the calculus a conclusion F can be
derived from a set of assumptions ' (I' - F), then F is a logical
consequence of ' (I' = F).

» Completeness: if F is a logical consequence of I (I' = F), then by the
rules of the calculus F can be derived from I' (I'+ F).

No logic that is stronger (more expressive) than first order predicate logic
has a proof calculus that also enjoys both soundness and completeness.
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Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth
of every formula is algorithmically decidable.

» Undecidability (Church/Turing, 1936/1937): there does not exist any
algorithm that for given formula set ' and formula F always
terminates and says whether ' |= F holds or not.

» Semidecidability: but there exists an algorithm, that for given I'
and F, if [ = F, detects this fact in a finite amount of time.

This algorithm searches for a proof of [ = F in a complete
proof calculus; if such a proof exists, it will eventually detect
it; however, if no such proof exists, the search runs forever.

Automatic proof search is not able to detect that a formula is not true.
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Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas

> Incompleteness Theorem (Kurt Godel, 1931): it is in no sound logic
possible to prove all true arithmetic statements (i.e., all statements
about natural numbers with addition and multiplication).

» To adequately characterize N, the (infinite) axiom scheme of
mathematical induction has to be added.

» Corollary: in every sound formal system that is sufficiently rich there
are statements that can neither be proved nor disproved.

In practice, complete reasoners for first-order logic are often supported by
(complete or incomplete) reasoners for special theories.
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