Institute for Formal Models and Verification Johannes Kepler University Linz

VL Logik (LVA-Nr. 342208), Winter Semester 2014/2015

Propositional Logic

Version 2014.5

Armin Biere (biere@jku.at) Martina Seidl (martina.seidl@jku.at)

Propositions

A proposition is a statement that is either *true or false*.

Example

- Alice comes to the party.
- One has to wear a shirt.
- It rains.

With connectives, propositions can be combined to complex propositions.

- Alice comes to the party and Bob comes to the party, but not Cecile.
- One has to wear either a shirt or a tie.
- If it rains, the street is wet.

Propositional Logic

- Ianguage for representing, combining, and interpreting propositions
- two truth values (Boolean domain): true/false, verum/falsum, on/off, 1/0
- language elements
 - atomic propositions (atoms, variables)
 - no internal structure
 - either true or false
 - In logic connectives: not (\neg), and (\land), or (\lor), . . .
 - operators for construction of composite propositions
 - concise meaning
 - argument(s) and return value from Boolean domain
 - parenthesis

Example

formula of propositional logic: $(\neg tie \lor shirt) \land (tie \lor shirt) \land (\neg tie \lor \neg shirt)$

- atoms: tie, shirt
- connectives: \neg , \lor , \land
- parenthesis for structuring the expression

Background

- historical origins: ancient Greeks
- two very basic principles:
 - Law of Excluded Middle: Each expression is either true or false.
 - Law of Contradiction: No statement is both true and false.
- very simple language
 - no objects, no arguments to propositions
 - no functions
 - no quantifiers
- solving is easy (relative to other logics)
- investigated in philosophy, mathematics, and computer science
- propositional logic in computer science:
 - description of digital circuits
 - automated verification
 - planning, scheduling, configuration problems
 - large research area in theoretical computer science
 - many applications in industry

The Language of Propositional Logic: Syntax

Definition

The set ${\mathcal L}$ of well-formed propositional formulas is the smallest set such that

- 1. $\top, \bot \in \mathcal{L};$
- 2. $\mathcal{P} \subseteq \mathcal{L}$ where \mathcal{P} is the set of atomic propositions (atoms, variables);
- **3**. if $\phi \in \mathcal{L}$ then $(\neg \phi) \in \mathcal{L}$;
- 4. if $\phi, \psi \in \mathcal{L}$ then $(\phi \circ \psi) \in \mathcal{L}$ with $\circ \in \{\lor, \land, \leftrightarrow, \rightarrow\}$.

 \mathcal{L} is the language of propositional logic. The elements of \mathcal{L} are *propositional formulas*.

In Backus-Naur form (BNF) propositional formulas are described as follows:

$$\phi ::= \top \mid \perp \mid p \mid (\neg \phi) \mid (\phi \lor \phi) \mid (\phi \land \phi) \mid (\phi \leftrightarrow \phi) \mid (\phi \to \phi)$$

Exampl	е			
— T	■ (¬a)	■ (¬(¬a))	■ (¬(a ∨ b))	$\blacksquare (((\neg a) \lor a') \leftrightarrow (b \to c))$
a a	■ (¬⊤)	■ (a ₁ ∨ a ₂)	$\blacksquare (\neg(a \leftrightarrow b))$	$\blacksquare (((a_1 \lor a_2) \lor (a_3 \land \bot)) \to b)$

Rules of Precedence

To reduce the number of parenthesis, we use the following conventions:

- $\blacksquare \ \neg$ is stronger than \land
- \blacksquare \land is stronger than \lor
- \blacksquare \lor is stronger than \rightarrow
- lacksquare \rightarrow is stronger than \leftrightarrow
- Binary operators of same strength are assumed to be left parenthesized (also called "left associative")

In case of doubt, uses parenthesis!

- $\neg a \land b \lor c \rightarrow d \leftrightarrow f$ is the same as $(((((\neg a) \land b) \lor c) \rightarrow d) \leftrightarrow f)$.
- $a' \lor a'' \lor a'' \land b' \lor b''$ is the same as $(((a' \lor a'') \lor (a'' \land b')) \lor b'')$.
- $a' \land a'' \land a'' \lor b' \land b''$ is the same as $(((a' \land a'') \land a''') \lor (b' \land b''))$.

Formula Tree

formulas have a tree structure

- inner nodes: connectives
- *leaves*: truth constants, variables

default: inner nodes have <u>one</u> child node (negation) or <u>two</u> nodes as children (other connectives).

tree structure reflects the use of parenthesis

simplification:

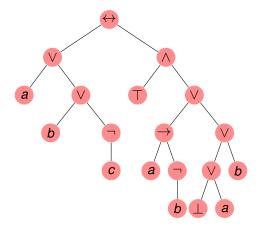
disjunction and conjunction may be considered as *n*-ary operators, i.e., if a node N and its child node C are of the same kind of connective (conjunction / disjunction), then the children of C can become direct children of N and the C is removed.

Formula Tree: Example (1/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (\bot \lor a \lor b)))$$

has the formula tree

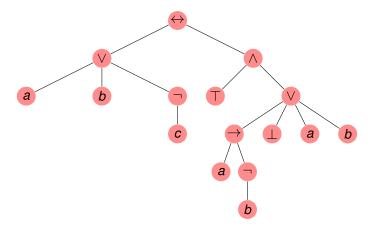


Formula Tree: Example (2/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (\bot \lor a \lor b)))$$

has the simplified formula tree



Subformulas

Definition

An immediate subformula is defined as follows:

- truth constants and atoms have no immediate subformula.
- only immediate subformula of $\neg \phi$ is ϕ .
- formula $\phi \circ \psi$ ($\circ \in \{\land, \lor, \leftrightarrow, \rightarrow\}$) has immediate subformulas ϕ and ψ .

The set of subformulas of a formula ϕ is the smallest set S such that

2. if $\psi \in S$ then all immediate subformulas of ψ are in S.

Informal: A subformula is a part of a formula and is itself a formula.

Example

The subformulas of $(a \lor b) \to (c \land \neg \neg d)$ are $\{a, b, c, d, \neg d, \neg \neg d, a \lor b, c \land \neg \neg d, (a \lor b) \to (c \land \neg \neg d)\}$

Limboole

SAT-solver

available at http://fmv.jku.at/limboole/

input format:

expr	::= iff
iff	::= implies { '<->' implies }
implies	::= or ['->' or '<-' or]
or	::= and { ' ' and }
and	::= not { '&' not }
not	::= basic '!' not
basic	::= var '(' expr ')'

where 'var' is a string over letters, digits, and - _ . [] \$ @

Example

In Limboole the formula $(a \lor b) \to (c \land \neg \neg d)$ is represented as

((a | b) -> (c & !!d))

Special Formula Structures

literal: variable or a negated variable (also (negated) truth constants)

- examples of literals: $x, \neg x, y, \neg y$
- If *I* is a literal with I = x or $I = \neg x$ then var(I) = x.
- For literals we use letter *I*, *k* (possibly indexed or primed).
- In principle, we identify $\neg \neg /$ with *I*.
- *clause*: disjunction of literals
 - unary clause (clause of size one): / where / is a literal
 - empty clause (clause of size zero): ⊥
 - examples of clauses: $(x \lor y), (\neg x \lor x' \lor \neg x''), x, \neg y$
- *cube*: conjunction of literals
 - unary cube (cubes of size one): / where / is a literal
 - empty cubes (cubes of size zero): ⊤
 - examples of cubes: $(x \land y), (\neg x \land x' \land \neg x''), x, \neg y$

Special Formula Structures: Negation Normal Form

Definition

Negation Normal Form (NNF) is defined as follows:

- Literals and truth constants are in NNF;
- $\phi \circ \psi$ ($\circ \in \{\lor, \land\}$) is in NNF iff ϕ and ψ are in NNF;
 - no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions, disjunctions, and negations and negations only occur in front of variables and constants.

If a formula is in negation normal form then

- in the formula tree, nodes with negation symbols only occur directly before leaves.
- there are no subformulas of the form ¬φ where φ is something else than a variable or a constant.
- it does not contain NAND, NOR, XOR, equivalence, and implication connectives.

Example The formula $((x \lor \neg x_1) \land (x \lor (\neg z \lor \neg x_1)))$ is in NNF but $\neg((x \lor \neg x_1) \land (x \lor (\neg z \lor \neg x_1)))$ is not in NNF.

Special Formula Structures: Conjunctive Normal Form

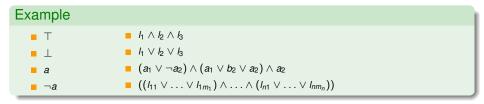
Definition

A propositional formula is in *conjunctive normal form* (CNF) iff it is a conjunction of clauses.

A formula in conjunctive normal form is

- in negation normal form.
- \blacksquare \top if it contains no clauses.
- easy to check whether it can be refuted (can be set to false).

remark: CNF is the input of most SAT-solvers (DIMACS format).



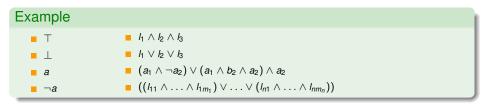
Special Formula Structures: Disjunctive Normal Form

Definition

A propositional formula is in *disjunctive normal form (DNF)* if it is a disjunction of cubes.

A formula in disjunctive normal form is

- in negation normal form.
- \blacksquare \perp if it contains no clauses.
- easy to check whether it can be satisfied (can be set to true).



Conventions

In general, we use the following conventions unless stated otherwise:

- *a*, *b*, *c*, *x*, *y*, *z* denote *variables*.
- I, k denote *literals*.
- ϕ, ψ, γ denote *arbitrary formulas*.
- *C*, *D* denote *clauses or cubes* (clear from context).
- *Clauses* are also written as sets.

$$(I_1 \vee \ldots \vee I_n) = \{I_1, \ldots I_n\}.$$

- To add a literal *I* to clause *C*, we write $C \cup \{I\}$.
- To remove a literal *I* from clause *C*, we write $C \setminus \{I\}$.
- Formulas in CNF are also written as sets of sets.
 - $\blacksquare ((I_{11} \vee \ldots \vee I_{1m_1}) \wedge \ldots \wedge (I_{n1} \vee \ldots \vee I_{nm_n})) = \{\{I_{11}, \ldots, I_{1m_1}\}, \ldots, \{I_{n1}, \ldots, I_{nm_n}\}\}.$
 - To add a clause C to CNF ϕ , we write $\phi \cup \{C\}$.
 - To remove a clause *C* from CNF ϕ , we write $\phi \setminus \{C\}$.

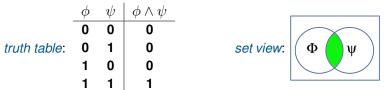
Elements of Propositional Logic: Negation

- unary connective (operator with exactly one argument)
- negating the truth value of its argument
- alternative notation for $\neg \phi$: $!\phi, \overline{\phi}, -\phi, NOT\phi$

- If the proposition "It rains." is true then the negation "It does not rain." is false.
- If proposition *a* is true then proposition $\neg a$ is false.
- If formula $((a \lor x) \land y)$ is true then formula $\neg((a \lor x) \land y)$ is false.
- If proposition *b* is false, then proposition $\neg b$ is true.
- If formula $((b \rightarrow y) \land z)$ is true then formula $\neg((b \rightarrow y) \land z)$ is false.

Elements of Propositional Logic: Conjunction

- a conjunction is true iff both arguments are true
- alternative notation for $\phi \land \psi$: $\phi \& \psi, \phi \psi, \phi * \psi, \phi \cdot \psi, \phi AND\psi$
- For $(\phi_1 \land \ldots \land \phi_n)$ we also write $\bigwedge_{i=1}^n \phi_i$.
- truth table:



- If the proposition "I want tea." is true and if the proposition "I want cake." is true then also "I want tea and I want cake." is true.
- The proposition $(a \land \neg a)$ is false.
- The proposition $(\top \land a)$ is true if *a* is true.
- The proposition $(\perp \land a)$ is false.
- If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.

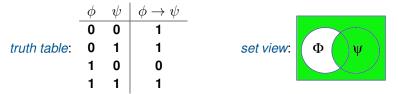
Elements of Propositional Logic: Disjunction

- a disjunction is true iff at least one of the arguments is true
- alternative notation for $\phi \lor \psi$: $\phi | \psi, \phi + \psi, \phi OR \psi$
- For $(\phi_1 \vee \ldots \vee \phi_n)$ we also write $\bigvee_{i=1}^n \phi_i$.

- The proposition $(a \lor \neg a)$ is true.
- The proposition ($\top \lor a$) is true.
- The proposition $(\perp \lor a)$ is true if *a* is true.
- If $(a \rightarrow b)$ is true and $(\neg c \rightarrow d)$ then $(a \rightarrow b) \lor (\neg c \rightarrow d)$ is true.
- If you see "The menu includes soup or dessert." in a restaurant then this is usually not a disjunction.

Elements of Propositional Logic: Implication

- an implication is true iff the first argument is false or both arguments are true
- alternative notation for $\phi \rightarrow \psi$: $\phi \supset \psi, \phi IMPL\psi$
- It holds: Verum ex quodlibet. Ex falsum quodlibet.



- If the proposition "It rains." is true and the proposition "The street is wet." is true then the statement "If it rains, the street is wet." is true.
- If the proposition "If it rains, the street is wet." is true and the statement "The street is wet." is true, it does not necessarily rain.
- The propositions $(\bot \rightarrow a)$ and $(a \rightarrow a)$ are true.
- The proposition $\top \rightarrow \phi$ is true if ϕ is true.

Elements of Propositional Logic: Equivalence

- binary connective
- an equivalence is true iff both elements have the same value
- alternative notation for $\phi \leftrightarrow \psi$: $\phi = \psi, \phi \equiv \psi, \phi \sim \psi$
- truth table:

- The formula $a \leftrightarrow a$ is always true.
- The formula $a \leftrightarrow b$ is true iff a is true and b is true or a is false and b is false.
- $\blacksquare \top \leftrightarrow \bot$ is never true.

Implication vs. Equivalence

In natural language, there is not always a clear distinction between equivalence and implication. The distinction comes from the context.

equivalence:

- Iff a student passes a course, (s)he has more than 50 points on the test.
 - To pass the course, it is necessary to have more than 50 points.
 - If a student has more than 50 points on the test then (s)he passes the test.
 - If the student does not have more than 50 points, (s)he does not pass the test.
 - If the student does not pass the test, (s)he did not get at least 50 points.

implication:

- If a student passes a course, (s)he has more than 50 points on the test.
 - This statement would also be true if a student fails even though having more than 50 points.
 - Having more than 50 points is necessary, but not sufficient to pass a course.

The Logic Connectives at a Glance

The meaning of the connectives can be summarized as follows:

ϕ	ψ	Τ	\perp	$\neg \phi$	$\phi \wedge \psi$	$\phi \lor \psi$	$\phi \to \psi$	$\phi \leftrightarrow \psi$	$\phi\oplus\psi$	$\phi\uparrow\psi$	$\phi\downarrow\psi$
0	0	1	0	1	0	0	1	1	0	1	1
0	1	1	0	1	0	1	1	0	1	1	0
							0				
1	1	1	0	0	1	1	1	1	0	0	0

Example

ϕ	ψ	$\neg(\neg\phi\wedge\neg\psi)$	$\neg\phi\lor\psi$	$(\phi ightarrow \psi) \wedge (\psi ightarrow \phi)$
0	0	0	1	1
0	1	1	1	0
1	0	1	0	0
1	1	1	1	1

Observation: connectives can be expressed by other connectives.

Other Connectives

- Overall, there are 16 different functions for binary connectives.
- So far, we had conjunction, disjunction, implication, equivalence.

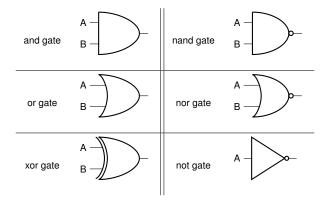
Further connectives:

- $\phi \not\leftrightarrow \psi$ (also \oplus , *xor*, antivalence)
- $\phi \uparrow \psi$ (*nand*, Sheffer Stroke Function)
- $\phi \downarrow \psi$ (*nor*, Pierce Function)

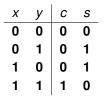
ϕ	ψ	$\phi\not\leftrightarrow\psi$	$\phi\uparrow\psi$	$\phi\downarrow\psi$
0	0	0	1	1
0	1	1	1	0
1	0	1	1	0
1	1	0	0	0

- nor and nand can express every other boolean function (i.e., they are functional complete)
- often used for building digital circuits (like processors)

Propositional Formulas and Digital Circuits

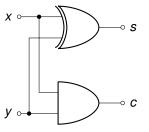


Example of a Digital Circuit: Half Adder



From the truth table, we see that

$$c \Leftrightarrow x \wedge y$$



and

 $s \Leftrightarrow x \oplus y.$

Different Notations

			Verilog		
operator	logic	circuits	C/C++/Java/C#	VHDL	Limboole
1	Т	1	true	1	_
0		0	false	0	_
negation	$\neg \phi$	$ar{\phi}$ –	ϕ ! ϕ	not ϕ	$!\phi$
conjunction	$\phi \wedge \psi$	$\phi\psi~~\phi\cdot$	$\psi \phi$ & & ψ	ϕ and ψ	ϕ & ψ
disjunction	$\phi \lor \psi$	$\phi + \psi$	$\phi \mid\mid \psi$	$\phi \; \textit{or} \; \psi$	$\phi \mid \psi$
exclusive or	$\phi \not\leftrightarrow \psi$	$\phi \oplus \psi$	$\phi \mathrel{!=} \psi$	ϕ xor ψ	_
implication	$\phi \to \psi$	$\phi \supset \psi$	—	_	$\phi \rightarrow \psi$
equivalence	$\phi \leftrightarrow \psi$	$\phi=\psi$	$\phi \; == \; \psi$	ϕ xnor ψ	$\phi < -> \psi$

Example

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (c \lor a \lor b)))$$

$$(a + (b + \bar{c})) = c ((a \supset -b) + (0 + a + b))$$

 $\blacksquare (a \mid\mid (b \mid\mid !c)) == (c \&\& ((! a \mid\mid !b) \mid\mid (false \mid\mid a \mid\mid b)))$

All 16 Binary Functions

(ϕ	ψ	constant 0	nor					xor	nand	and	equivalence		implication			or	constant 1
	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
(0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Assignment

- A variable can be assigned one of two values from the two-valued domain \mathbb{B} , where $\mathbb{B} = \{\mathbf{1}, \mathbf{0}\}$.
- The mapping $\nu : \mathcal{P} \to \mathbb{B}$ is called *assignment*, where \mathcal{P} is the set of atomic propositions.
- We sometimes write an assignment ν as set $V \subseteq \mathcal{P} \cup \{\neg x | x \in \mathcal{P}\}$:

$$x \in V \text{ iff } \nu(x) = \mathbf{1}$$

$$\neg x \in V ext{ iff }
u(x) = \mathbf{0}$$

- For *n* variables, there are 2^n assignments possible.
- An assignment corresponds to one line in the truth table.

x	y	Ζ	$(x \lor y) \land \neg z$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0
			•

- One assignment: $\nu(x) = \mathbf{1}, \nu(y) = \mathbf{0}, \nu(z) = \mathbf{1}$
- Alternative notation: $V = \{x, \neg y, z\}$
 - Observation: A variable assignment determines the truth value of the formulas containing these variables.

The Language of Propositional Logic: Semantics

Definition

Given assignment $\nu : \mathcal{P} \to \mathbb{B}$, the interpretation $[.]_{\nu} : \mathcal{L} \to \mathbb{B}$ is defined by:

•
$$[\top]_{\nu} = 1, [\bot]_{\nu} = 0$$

• if $x \in \mathcal{P}$ then $[x]_{\nu} = \nu(x)$
• $[\neg \phi]_{\nu} = 1$ iff $[\phi]_{\nu} = 0$
• $[\phi \lor \psi]_{\nu} = 1$ iff $[\phi]_{\nu} = 1$ or $[\psi]_{\nu} = 1$

An assignment is called

- *satisfying* a formula ϕ iff $[\phi]_{\nu} = 1$.
- **falsifying** a formula ϕ iff $[\phi]_{\nu} = \mathbf{0}$.
- An assignment satisfying a formula ϕ is a *model* of ϕ .
- An assignment falsifying a formula φ is a *counter-model* of φ.

ExampleFor formula $((x \lor y) \land \neg z)$,• $\{x, y, z\}$ is a counter-model,• $\{x, y, \neg z\}$ is a model.

Properties of Propositional Formulas (1/2)

- formula ϕ is *satisfiable* iff exists interpretation $[.]_{\nu}$ with $[\phi]_{\nu} = \mathbf{1}$ check with limboole -s
- formula φ is valid iff for all interpretations [.]_ν it holds that [φ]_ν = 1 check with limboole
- a valid formula is called *tautology*
- formula φ is *refutable* iff exists interpretation [.]_ν with [φ]_ν = 0 check with limboole
- formula ϕ is *unsatisfiable* iff $[\phi]_{\nu} = \mathbf{0}$ for all interpretations $[.]_{\nu}$ check with limboole -s
 - an unsatisfiable formula is called *contradiction*

- \blacksquare \top is valid.
- $\blacksquare \perp$ is unsatisfiable.
- $(a \lor \neg b) \land (\neg a \lor b)$ is refutable.
- $a \rightarrow b$ is satisfiable.
- $a \leftrightarrow \neg a$ is a contradiction.
- $(a \lor \neg b) \land (\neg a \lor b)$ is satisfiable.

Properties of Propositional Formulas (2/2)

- A satisfiable formula is
 - possibly valid
 - possibly refutable
 - not unsatisfiable.
- A valid formula is
 - satisfiable
 - not refutable
 - not unsatisfiable.

- A refutable formula is
 - possibly satisfiable
 - possibly unsatisfiable
 - not valid.
- An unsatisfiable formula is
 - refutable
 - not valid
 - not satisfiable.

- satisfiable, but not valid: $a \leftrightarrow b$
- satisfiable and refutable: $(a \lor b) \land (\neg a \lor c)$
- valid, not refutable $op \lor (a \land
 eg a)$
- not valid, refutable $(\perp \lor b)$

Semantic Equivalence

Definition

Two formula ϕ and ψ are *semantic equivalent* (written as $\phi \Leftrightarrow \psi$) iff forall interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu} = [\psi]_{\nu}$.

Note:

- \blacksquare \Leftrightarrow is a *meta-symbol*, i.e., it is not part of the language.
- natural language: if and only if (iff)
- $\phi \Leftrightarrow \psi$ iff $\phi \leftrightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.
- If ϕ and ψ are not equivalent, we write $\phi \not\Leftrightarrow \psi$.

- $a \lor \neg a \not\Leftrightarrow b \to \neg b$ $a \lor \neg a \Leftrightarrow b \lor \neg b$ $a \lor \neg a \Leftrightarrow b \lor \neg b$ $a \lor \neg a \Leftrightarrow b \lor \neg b$ $a \land \neg a \Leftrightarrow b \lor \neg b$
- 33

Examples of Semantic Equivalences

		1
$\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$	$\phi \lor \psi \Leftrightarrow \psi \lor \phi$	commutativity
$\phi \wedge (\psi \wedge \gamma) \Leftrightarrow (\phi \wedge \psi) \wedge \gamma$	$\phi \lor (\psi \lor \gamma) \Leftrightarrow (\phi \lor \psi) \lor \gamma$	associativity
$\phi \wedge (\phi \vee \psi) \Leftrightarrow \phi$	$\phi \lor (\phi \land \psi) \Leftrightarrow \phi$	absorption
$\phi \land (\psi \lor \gamma) \Leftrightarrow (\phi \land \psi) \lor (\phi \land \gamma)$	$\phi \lor (\psi \land \gamma) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \gamma)$	distributivity
$\neg(\phi \land \psi) \Leftrightarrow \neg \phi \lor \neg \psi$	$\neg(\phi\lor\psi)\Leftrightarrow\neg\phi\wedge\neg\psi$	laws of De Morgan
$\phi \leftrightarrow \psi \Leftrightarrow (\phi ightarrow \psi) \wedge (\psi ightarrow \phi)$	$\phi \leftrightarrow \psi \Leftrightarrow (\phi \wedge \psi) \lor (\neg \phi \wedge \neg \psi)$	synt. equivalence
$\phi \lor \psi \Leftrightarrow \neg \phi \to \psi$	$\phi \rightarrow \psi \Leftrightarrow \neg \psi \rightarrow \neg \phi$	implications
$\phi \wedge \neg \phi \Leftrightarrow \bot$	$\phi \vee \neg \phi \Leftrightarrow \top$	complement
$\neg\neg\phi \Leftrightarrow \phi$		double negation
$\phi \wedge \top \Leftrightarrow \phi$	$\phi \lor \bot \Leftrightarrow \phi$	neutrality
$\phi \vee \top \Leftrightarrow \top$	$\phi \wedge \bot \Leftrightarrow \bot$	
$\neg\top \Leftrightarrow \bot$	$\neg \bot \Leftrightarrow \top$	

Further Connections between Formulas

- A formula ϕ is valid iff $\neg \phi$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\neg \phi$ is not valid.
- The formulas ϕ and ψ are equivalent iff $\phi \leftrightarrow \psi$ is valid.
- The formulas ϕ and ψ are equivalent iff $\neg(\phi \leftrightarrow \psi)$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\phi \nleftrightarrow \bot$.

Logic Entailment

Definition

Let $\phi_1, \ldots \phi_n, \psi$ be propositional formulas. Then $\phi_1, \ldots \phi_n$ *entail* ψ (written as $\phi_1, \ldots, \phi_n \models \psi$) iff $[\phi_1]_{\nu} = \mathbf{1}, \ldots [\phi_n]_{\nu} = \mathbf{1}$ implies that $[\psi]_{\nu} = \mathbf{1}$.

Informal meaning: True premises derive a true conclusion.

- |= is a *meta-symbol*, i.e., it is not part of the language.
- $\phi_1, \ldots \phi_n \models \psi$ iff $(\phi_1 \land \ldots \land \phi_n) \rightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.
- If $\phi_1, \ldots \phi_n$ do not entail ψ , we write $\phi_1, \ldots \phi_n \not\models \psi$.

Definition

Two formulas ϕ and ψ are *satisfiability-equivalent* (written as $\phi \Leftrightarrow_{SAT} \psi$) iff both formulas are satisfiable or both are contradictory.

- Satisfiability-equivalent formulas are not necessarily satisfied by the same assignments.
- Satisfiability equivalence is a weaker property than equivalence.
- Often sufficient for simplification rules: If the complicated formula is satisfiable then also the simplified formula is satisfiable.

Example

Positive pure literal elimination rule: If a variable *x* occurs in a formula but $\neg x$ does not occur in the formula, then *x* can be substituted by \top . The resulting formula is satisfiability-equivalent.

$$x \Leftrightarrow_{SAT} \top$$
, but $x \not\Leftrightarrow \top$

$$(a \land b) \lor (\neg c \land a) \Leftrightarrow_{SAT} b \lor \neg c, \text{ but } (a \land b) \lor (\neg c \land a) \not\Leftrightarrow b \lor \neg c$$

Representing Functions as CNFs

Problem: Given the truth table of a Boolean function ϕ . How is the function represented in propositional logic?

Solution (Representation as CNF):

- 1. Represent each assignment ν where ϕ has value **0** as clause:
 - If variable *x* is **1** in *ν*, add ¬*x* to clause.
 - If variable *x* is **0** in *ν*, add *x* to clause.
- 2. Connect all clauses by conjunction.

E	Example							
	а	b	с	ϕ	clauses			
	0	0	0	0	$a \lor b \lor c$			
	0	0	1	1				
	0	1	0	1				
	0	1	1	0	$a \lor \neg b \lor \neg c$			
	1	0	0	1				
	1	0	1	0	$\neg a \lor b \lor \neg c$			
	1	1	0	0	$\neg a \lor \neg b \lor c$			
	1	1	1	1				
$\phi = (a \lor b \lor c) \land (a \lor \neg b \lor \neg c) \land$								
	$(\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor c)$							

Representing Functions as DNFs

Problem: Given the truth table of a Boolean function ϕ . How is the function represented in propositional logic?

Solution (Representation as DNF):

- 1. Represent each assignment ν where ϕ has value **1** as cube:
 - If variable *x* is **1** in *ν*, add *x* to cube.
 - If variable x is **0** in ν , add $\neg x$ to cube.
- 2. Connect all cubes by disjunction.

E	xar	nple	Э				
	а	b	с	ϕ	cubes		
	0	0	0	0			
	0	0	1	1	$\neg a \land \neg b \land c$		
	0	1	0	1	$\neg a \wedge b \wedge \neg c$		
	0	1	1	0			
	1	0	0	1	$a \wedge \neg b \wedge \neg c$		
	1	0	1	0			
	1	1	0	0			
	1	1	1	1	$a \wedge b \wedge c$		
	$\phi = (\neg a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (a \land b \land c)$						

Functional Completeness

- In propositional logic there are
 - **2** functions of arity 0 (\top , \perp)
 - 4 functions of arity 1 (e.g., not)
 - 16 functions of arity 2 (e.g., and, or, ...)
 - 2^{2^n} functions of arity *n*.
- A function of arity n has 2ⁿ different combinations of arguments (lines in the truth table).
 - A functions maps its arguments either to **1** or **0**.

Definition

A set of functions is called *functional complete* for propositional logic iff it is possible to express all other functions of propositional logic with functions from this set.

- $\{\neg, \wedge\}$ is functional complete.
- $\{\neg, \lor\}$ is functional complete.
- nand is functional complete.
- nor is functional complete.

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k colors, such that there is no edge $(v, w) \in E$, with vertices v and w colored in the same color.

Encoding:

- 1. *Propositional variables*: v_j ... node $v \in V$ has color j ($1 \le j \le k$)
- 2. each node has a color:

$$\bigwedge_{v\in V} (\bigvee_{1\leq j\leq k} v_j)$$

3. each node has *just one color*.

 \neg ($v_i \land v_j$) with $v \in V, 1 \le i < j \le k$

4. neighbors have *different colors*: $\neg(v_i \land w_i)$ with $(v, w) \in E, 1 \le i \le k$

Example 2-coloring of $(\{a, b, c\}, \{(a, b), (b, c)\})$ 1. $a_1, a_2, b_1, b_2, c_1, c_2$ 2. $a_1 \lor a_2, b_1 \lor b_2, c_1 \lor c_2$ 3. $\neg(a_1 \land a_2), \neg(b_1 \land b_2), \neg(c_1 \land c_2)$ 4. $\neg(a_1 \land b_1), \neg(a_2 \land b_2)$ $\neg(b_1 \land c_1), \neg(b_2 \land c_2)$

A Puzzle

A lady is in one of two rooms called A and B. A tiger is also in A or B. On the door of A there is a sign: "This room contains a lady, the other room contains a tiger." The door of room B has a sign: "The tiger and the lady are not in the same room." One sign lies. Where is the lady, where is the tiger?

based on a puzzle by Raymond Smullyan

One possible SAT encoding:

- signOnA represents that sign of room A says the truth
- signOnB represents that sign of room B says the truth
- ladyInA or ladyInB represents that lady is in A or B respectively
- **tigerInA** or tigerInB represents that tiger is in A or B respectively
- lady is in room A or B, but not in both: $(|adylnA \vee |adylnB) \land \neg (|adylnA \land |adylnB)$
- tiger is in room A or B, but not in both: (tigerInA ∨ tigerInB) ∧ ¬(tigerInA ∧ tigerInB)
- one sign lies, one sign is true:
- sign of room A:
- sign of room B: $signOnB \leftrightarrow (\neg(tigerInA \land ladyInA) \land \neg(tigerInB \land ladyInB))$

 $(signOnA \leftrightarrow \neg signOnB)$

 $signOnA \leftrightarrow (ladylnA \wedge tigerlnB)$