Institute for Formal Models and Verification
Johannes Kepler University Linz

VL Logik (LVA-Nr. 342208), Winter Semester 2014/2015

Propositional Logic
Version 2014.5

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

Propositions

A proposition is a statement that is either true or false.

Example
Alice comes to the party.
One has to wear a shirt.
It rains.

With connectives, propositions can be combined to complex propositions.

Example
Alice comes to the party and Bob comes to the party, but not Cecile.
One has to wear either a shirt or a tie.
If it rains, the street is wet.

Propositional Logic

language for representing, combining, and interpreting propositions
two truth values (Boolean domain): true/false, verum/falsum, on/off, 1/0

language elements

m atomic propositions (atoms, variables)
H no internal structure
m either true or false

m logic connectives: not (—), and (A), or (V), ...
W operators for construction of composite propositions
B concise meaning
B argument(s) and return value from Boolean domain

m parenthesis

Example

formula of propositional logic: (—tie V shirt) A (tie V shirt) A (—tie V —shirt)
atoms: tie, shirt
connectives: -, V, A
parenthesis for structuring the expression

Background

historical origins: ancient Greeks

two very basic principles:
m Law of Excluded Middle: Each expression is either true or false.
m Law of Contradiction: No statement is both true and false.

very simple language
= no objects, no arguments to propositions

= no functions
= no quantifiers

solving is easy (relative to other logics)

investigated in philosophy, mathematics, and computer science
propositional logic in computer science:

m description of digital circuits

m automated verification

m planning, scheduling, configuration problems

m large research area in theoretical computer science

® many applications in industry

The Language of Propositional Logic: Syntax

Definition

The set L of well-formed propositional formulas is the smallest set such that
1. T,1L e L;
2. P C L where P is the set of atomic propositions (atoms, variables);
3. if ¢ € Lthen (—¢) € L;
4. if p,1p € Lthen (p o) € Lwitho € {V,A, <, —}.

L is the language of propositional logic. The elements of L are propositional
formulas.

In Backus-Naur form (BNF) propositional formulas are described as follows:
p=T|L[p|(=0)|(¢V)| (¢NQ)| (S)](¢—)
Example

T (=a) (=(=a)) (=(av b)) () va) < (b= c))
a (=) (a1Vaz) (—(a > b)) (((ar V) V (as A L)) = b)

Rules of Precedence

To reduce the number of parenthesis, we use the following conventions:
— is stronger than A
A is stronger than Vv
V is stronger than —
— is stronger than >

Binary operators of same strength are assumed to be left parenthesized
(also called “left associative”)

In case of doubt, uses parenthesis!

Example
—aAbVc— d<+ fisthe same as (((((—a) A b) V ¢c) — d) <> f).
ava va Ab' vib'isthesameas (((&' VvV a’') Vv (ad' Ab))Vb').
anad Nd'vbp Abisthesameas (((8 Aa')Ad") Vv (b AB7)).

Formula Tree

formulas have a tree structure

®m inner nodes: connectives
m /eaves: truth constants, variables

default: inner nodes have one child node (negation) or
two nodes as children (other connectives).

tree structure reflects the use of parenthesis

simplification:

disjunction and conjunction may be considered as n-ary operators,

i.e., if anode N and its child node C are of the same kind of connective
(conjunction / disjunction), then the children of C can become direct
children of N and the C is removed.

Formula Tree: Example (1/2)

The formula

(aV (bV —c)) ¢ (T A((a— =b) V(L VaVb)))

has the formula tree

A

TE
Q?/ ®
b0 6

Formula Tree: Example (2/2)

The formula

(aV (bV —c)) ¢ (T A((a— =b) V(L VaVb)))

has the simplified formula tree

ST N

Subformulas

Definition
An immediate subformula is defined as follows:
truth constants and atoms have no immediate subformula.
only immediate subformula of —¢ is ¢.
formula ¢ o ¢ (0 € {A,V, >, —}) has immediate subformulas ¢ and .
The set of subformulas of a formula ¢ is the smallest set S such that
1. €S
2. if ¢ € Sthen all immediate subformulas of v are in S.

Informal: A subformula is a part of a formula and is itself a formula.

Example

The subformulas of (aVV b) — (¢ A =—d) are
{a,b,c,d,—~d,——d,aV b,c \N——d,(aV b) — (cA\—-—d)}

Limboole

SAT-solver
available at http://fmv.jku.at/limboole/
input format:

expr = 1iff

iff ::= implies { ’'<->' implies }

implies ::= or ["->" or | '<=' or]

or c:=and { |’ and }

and ::= not { &’ not }

not ::= basic | !’ not

basic = var | (' expr ")’

where 'var’ is a string over letters, digits,and - _ . [] $ @

Example

In Limboole the formula (a VvV b) — (¢ A =—d) is represented as

((a |) —> (c & !'!d))

http://fmv.jku.at/limboole/

Special Formula Structures

literal: variable or a negated variable (also (negated) truth constants)
m examples of literals: x, —x, y, —y
m If /is a literal with / = x or / = —x then var(/) = x.
m For literals we use letter /, k (possibly indexed or primed).
m In principle, we identify ——/ with /.

clause: disjunction of literals
m unary clause (clause of size one): / where / is a literal
m empty clause (clause of size zero): L
m examples of clauses: (x V y), (-x V X'V =x"), x, -y

cube: conjunction of literals
m unary cube (cubes of size one): / where [is a literal
m empty cubes (cubes of size zero): T
m examples of cubes: (x A y), (=x A x’ A =x""), x, -y

Special Formula Structures: Negation Normal Form

Definition

Negation Normal Form (NNF) is defined as follows:

Literals and truth constants are in NNF;

¢ o1 (o € {V,A})isin NNF iff ¢ and 1) are in NNF;

no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions, disjunctions, and
negations and negations only occur in front of variables and constants.

If a formula is in negation normal form then
in the formula tree, nodes with negation
symbols only occur directly before leaves.

there are no subformulas of the form —¢
where ¢ is something else than a variable
or a constant.

it does not contain NAND, NOR, XOR,
equivalence, and implication connectives.

Example

The formula

((xV=x1) A (xV (mzV —x1)))
is in NNF but
=((xV=x1)A(xV(=zV-x1)))
is not in NNF.

Special Formula Structures: Conjunctive Normal Form

Definition
A propositional formula is in conjunctive normal form (CNF) iff it is a
conjunction of clauses.

A formula in conjunctive normal form is

in negation normal form.

T if it contains no clauses.

easy to check whether it can be refuted (can be set to false).
remark: CNF is the input of most SAT-solvers (DIMACS format).

Example
T hANbAL
1 hVhkVh
a (a1 V@) A (a1 Vb Va)Aap

—a ((IHV~--\/I1m1)/\~~~/\(ln1\/~~\/lnmn))

Special Formula Structures: Disjunctive Normal Form

Definition
A propositional formula is in disjunctive normal form (DNF) if it is a disjunction
of cubes.

A formula in disjunctive normal form is
in negation normal form.
L if it contains no clauses.

easy to check whether it can be satisfied (can be set to true).

Example
T h AL AR
1 hVhkVh
a (a1 A—a)V(at Abo Aa) A a

—a ((111/\~-~/\/1m1)V-~-v(/n1/\--~/\/nm,,))

Conventions

In general, we use the following conventions unless stated otherwise:

a, b, c, x,y,zdenote variables.
I, k denote literals.
@, 1, ~y denote arbitrary formulas.

C, D denote clauses or cubes (clear from context).

Clauses are also written as sets.
| (/1 \/...\//,7):{/1,.../,7}.
m To add a literal / to clause C, we write C U {/}.
m To remove a literal / from clause C, we write C\{/}.
Formulas in CNF are also written as sets of sets.
| | ((/11\/. . .\//1,771)/\. . ./\(/m\/. . ~\//nmn)) = {{/11, e /1m1 }7 ey {/,71 yee lnm,,}}-
m To add a clause C to CNF ¢, we write ¢ U {C}.
m To remove a clause C from CNF ¢, we write $\{C}.

Elements of Propositional Logic: Negation

= unary connective (operator with exactly one argument)
m negating the truth value of its argument
= alternative notation for —¢: |, ¢, —p, NOT ¢

¢ | ~¢

truth table: 0 | 1 set view: |
1] 0

Example

If the proposition “It rains.” is true then the negation “It does not rain.” is false.
If proposition a is true then proposition —a is false.

If formula ((a V x) A y) is true then formula =((a V x) A y) is false.

If proposition b is false, then proposition —b is true.

If formula ((b — y) A z) is true then formula —=((b — y) A z) is false.

Elements of Propositional Logic: Conjunction

a conjunction is true iff both arguments are true

alternative notation for ¢ A ¥: ¢p&tp, dp, ¢ x 1, & - 1, PANDY
For (¢1 A ... A ¢n) we also write A\, ¢;.

truth table:
o Y| PNy
0 0 0
truth table: 0 1 0 set view:
1 0 0
1 1 1
Example

If the proposition “I want tea.” is true and if the proposition “| want cake.” is true then also “| want tea
and | want cake.” is true.

The proposition (a A —a) is false.

The proposition (T A a) is true if a is true.

The proposition (L A a) is false.

If (aV b) is true and (—c V d) is true then (a vV b) A (—c V d) is true.

Elements of Propositional Logic: Disjunction

m adisjunction is true iff at least one of the arguments is true
= alternative notation for ¢ \VV ¢¥: ¢|¢, ¢ + ¥, pOR
m For (¢1 V...V ¢,) we also write \//_, .

XX

(0
0 0
1 1 set view: .
0 1
1 1
Example

The proposition (a VV —a) is true.
The proposition (T V a) is true.

truth table:

- -0 O3

The proposition (L V a) is true if a is true.
If (a — b) is true and (—c — d) then (a — b) V (—c — d) is true.

If you see "The menu includes soup or dessert." in a restaurant then this is usually not a disjunction.
v

Elements of Propositional Logic: Implication

= an implication is true iff the first argument is false or both arguments are

true

m alternative notation for ¢ — 1: ¢ D ¥, pIMPLY
m It holds: Verum ex quodlibet. Ex falsum quodlibet.

¢ Y| o—

0 0 1
truth table: 0 1 1

1 0 0

1 1 1
Example

set view:

u If the proposition "It rains." is true and the proposition "The street is wet." is true then the statement

"If it rains, the street is wet." is true.

u If the proposition "If it rains, the street is wet." is true and the statement "The street is wet." is true, it

does not necessarily rain.

= The propositions (L — a) and (a — a) are true.

m The proposition T — ¢ is true if ¢ is true.

20

Elements of Propositional Logic: Equivalence

m binary connective

m an equivalence is true iff both elements have the same value
m alternative notation for ¢ <> ¥: ¢ =, p =, ~ Y

m truth table:

R

truth table:

- - 0O O

P >

0 1

1 0 set view: |
0 0

1 1

Example
= The formula a <+ ais always true.
m The formula a <+ bis true iff ais true and b is true or a is false and b is false.
m T <> L is never true.

21

Implication vs. Equivalence

In natural language, there is not always a clear distinction between
equivalence and implication. The distinction comes from the context.

equivalence:

Iff a student passes a course, (s)he has more than 50 points on the test.
m To pass the course, it is necessary to have more than 50 points.

m If a student has more than 50 points on the test then (s)he passes the test.

m If the student does not have more than 50 points, (s)he does not pass the
test.

m [f the student does not pass the test, (s)he did not get at least 50 points.
implication:

If a student passes a course, (s)he has more than 50 points on the test.

m This statement would also be true if a student fails even though having
more than 50 points.

m Having more than 50 points is necessary, but not sufficient to pass a
course.

22

The Logic Connectives at a Glance

The meaning of the connectives can be summarized as follows:

¢ Y| T L ¢ oAY VY ¢—= sy oY ¢ty ¢l
0 o1 o0 1 0 0 1 1 0 1 1
0o 1 1 0 1 0 1 1 0 1 1 0
1. 0[1 0 o 0 1 0 0 1 1 0
1 1 1 0 0 1 1 1 1 0 0 0
Example

¢ Y| (pAY) VY (92 Y)A (Y —)

0 O 0 1 1

0o 1 1 1 0

1 0 1 0 0

1 1 1 1 1

Observation: connectives can be expressed by other connectives.

Other Connectives

Overall, there are 16 different functions for binary connectives.
So far, we had conjunction, disjunction, implication, equivalence.

Further connectives:

B ¢ ¥ 1 (also @, xor, antivalence)
®m ¢ 1 ¢ (nand, Sheffer Stroke Function)
m ¢ | ¥ (nor, Pierce Function)

¢ Y| oHY oty ¢l
0 0] o 1 1
0 1| 1 1 0
1. 0] 1 1 0
1 1] 0 0 0

nor and nand can express every other boolean function
(i.e., they are functional complete)

often used for building digital circuits (like processors)

24

Propositional Formulas and Digital Circuits

and gate B nand gate B

DD
D D

xor gate B

not gate

25

Example of a Digital Circuit: Half Adder

From the truth table, we see that

ce XAy ym;{::>mc

S&XDYy.

and

26

Different Notations

Verilog
operator logic circuits ~ C/C++/Java/C# VHDL Limboole
1 T 1 true 1 —
0 L 0 false 0 —
negation ¢ 6 —o lp not ¢ e
conjunction || ¢ A oY o P && Y ¢ and 1 o &Y
disiunction | ¢V b+ &1 pory p|U
exclusiveor || ¢ <A1 DY Q=1 ¢ xor 1) —
implication || ¢ — ¥ ¢ DY — — o —>
equivalence || ¢ <> ¥ o= ¢ == ¢ xnorp p<->

Example
(av(bVv—=c)) < (TA((a— —b)V(cVaVbhb)))
(a+(b+c))=c((ad>—b)+(0+a+0b))
(all (b tec)) == (c && ((1a||! b) || (false || a|| b)))

27

All 16 Binary Functions

| JUBISUOD

10

uoleoldwi

aouseninba
pue
pueu

10X

Jou

0 luelsuod

1
0 0 0 00O 0 O

0 0 0 O

1

1

=

-

0

1

28

Assignment

A variable can be assigned one of two values from the two-valued domain
B, where B = {1, 0}.
The mapping v : P — B is called assignment, where P is the set of

atomic propositions.

We sometimes write an assignment v as set V C P U {-x|x € P}:
B xe Viffr(x) =1
B —xe Viffy(x) =0

For n variables, there are 2" assignments possible.

An assignment corresponds to one line in the truth table.

Example
x y z| (xVy)A-z
0 0 o 0 One assignment: v(x) = 1,v(y) =0,v(z) =1
g ? :; (1) Alternative notation: V = {x, -y, z}
? (1) :J ? Observation: A variable assignment determines
1 0 1 (] the truth value of the formulas containing these
1 1 ‘1’ ; variables.

The Language of Propositional Logic: Semantics

Definition

Given assignment v : P — B, the interpretation [.], : £ — B is defined by:

[—l—],, =1, [J-]u =0

if x € P then [x], = v(x)

[~¢], = 1iff [¢], =0

[Vl =1iff [¢], =1 or [], =1

An assignment is called
m satisfying a formula ¢ iff [¢], = 1.
m falsifying a formula ¢ iff [¢], = 0.
An assignment satisfying a formula ¢
is a model of ¢.

An assignment falsifying a formula ¢
is a counter-model of ¢.

Example

For formula ((x V y) A —z),
{x, y, z} is a counter-model,
{x,y,—z} is a model.

30

Properties of Propositional Formulas (1/2)

formula ¢ is satisfiable iff exists interpretation [.],, with [¢], = 1
check with 1imboole -s

formula ¢ is valid iff for all interpretations [.],, it holds that [¢], = 1
check with 1imboole

a valid formula is called tautology

formula ¢ is refutable iff exists interpretation [.], with [¢], = 0
check with 1imboole

formula ¢ is unsatisfiable iff [¢], = 0 for all interpretations [.],,
check with 1imboole -s

an unsatisfiable formula is called contradiction

Example
T is valid. a — b is satisfiable.
| is unsatisfiable. a < —ais a contradiction.

(aV —b) A (—aV b) is refutable. (aV —b) A (—aV b) is satisfiable.

31

Properties of Propositional Formulas (2/2)

A satisfiable formula is A refutable formula is
m possibly valid m possibly satisfiable
m possibly refutable m possibly unsatisfiable
= not unsatisfiable. m not valid.

A valid formula is An unsatisfiable formula is
m satisfiable m refutable
m not refutable = not valid
=E not unsatisfiable. m not satisfiable.

Example

satisfiable, but not valid: a <+ b

satisfiable and refutable: (aV b) A (-aV ¢)
valid, not refutable T V (a A —a)

not valid, refutable (L VV b)

32

Semantic Equivalence

Definition

Two formula ¢ and v are semantic equivalent (written as ¢ <) iff forall
interpretations [.],, it holds that [¢], = [¢],.

Note:

& is a meta-symbol, i.e., it is not part of the language.
natural language: if and only if (iff)

¢ < Y iff ¢ <> 1) is valid, i.e., we can express semantics by means of
syntactics.

If ¢ and 1 are not equivalent, we write ¢ <5 1.

Example

av-asb— —b (avb)A—=(aVvb) s L
av-as bV -b (a<> (b« c)) < ((a+> b) <> 0)

33

Examples of Semantic Equivalences

A S DA PV S BV commutativity
AW AY) & (BAY)AY oV (V) e (eVY)Vy associativity
SA(PVY) & ¢ SV (PAY) & ¢ absorption
PANDVY) S (PAP)V(OATY) | ¢V (P AY) S (dVY)A(dVy) | distributivity
(P AYD) & ¢V b (P V) & —d A laws of De Morgan
p e (@=V)A (Y —) b P (AY)V (~p A—p) | synt equivalence
PV & —dp— oY Y — o implications
PA—p = L ¢V - T complement
A double negation
PANT & ¢ [AV RN neutrality

¢V T & T dPNL & L

-Tel -LeT

34

Further Connections between Formulas

A formula ¢ is valid iff —¢ is unsatisfiable.

A formula ¢ is satisfiable iff ~¢ is not valid.

The formulas ¢ and 1) are equivalent iff ¢ <> 1 is valid.

The formulas ¢ and ¢ are equivalent iff (¢ <> 1)) is unsatisfiable.

A formula ¢ is satisfiable iff ¢ <> 1.

35

Logic Entailment

Definition

Let ¢1, ... dn, 1 be propositional formulas. Then ¢y, . . . ¢, entail y) (written as

O1y .., O E V) iff [p1], =1, ... [dn], = 1 implies that [¢], = 1.

Informal meaning: True premises derive a true conclusion.

= is a meta-symbol, i.e., it is not part of the language.

O1,y .. On EVIff (01 A ... A pn) — 2 is valid, i.e., we can express
semantics by means of syntactics.

If ¢1,...¢ndo not entail ¢, we write ¢1, ... ¢, & 1.

Example
alFavb EaVv-a
abEanb K an-a

a,a—bEb 1l E=an—a

36

Satisfiability Equivalence

Definition
Two formulas ¢ and v are satisfiability-equivalent (written as ¢ <> gar) iff
both formulas are satisfiable or both are contradictory.

Satisfiability-equivalent formulas are not necessarily satisfied by the same
assignments.
Satisfiability equivalence is a weaker property than equivalence.

Often sufficient for simplification rules: If the complicated formula is
satisfiable then also the simplified formula is satisfiable.

Example

Positive pure literal elimination rule: If a variable x occurs in a formula but —x does not occur in the formula,
then x can be substituted by T. The resulting formula is satisfiability-equivalent.

X &Sgar T,butx & T
(anb)V (—cAa)<sar bV —c,but(anb)V(-cAa) s bV -—c

37

Representing Functions as CNFs

Problem: Given the truth table of a Boolean function ¢. How is the

function represented in propositional logic?

Example
)] a b c|o¢ clauses
Solution (Representation as CNF): 0 0 0|0 2V bV o
1. Represent each assignment v 0 0 11
where ¢ has value 0 as clause: 0 1 0|1
m If variable x is 1 in v, add —x 01 1lo0 aVv —bV —c
to clause.
u If variable x is 0 in v, add x to O
clause. 1 0 1|0]| -avbV-c
1 1 —aV -
2. Connect all clauses by 11 ? g av-bve

conjunction.

¢p=(avbVvec)A(aV-bV-c)A

(maVvbV-c)A(-aV-bVec)

<

38

Representing Functions as DNFs

Problem: Given the truth table of a Boolean function ¢. How is the
function represented in propositional logic?

Example
a b c|o cubes
Solution (Representation as DNF): 0 0 0|0
1. Represent each assignment v 0 0 11) ~aN-bAc
where ¢ has value 1 as cube: 0 1 01| naAbA-C
m |f variable x is 1 in v, add x to 01 1|0
cube. 1 0 0|1 | aNn—bA—-cC
m [f variable x is 0 in v, add —x 1 0 1]0
to cube. 1 1 00
2. Connect all cubes by disjunction. 1 1 1|1 anbAc

¢p=(-aN-bAc)V(-aAnbA
-c)V(aAn—-bA-c)V(aAbAc)

<

39

Functional Completeness

In propositional logic there are
m 2 functions of arity 0 (T, L)
m 4 functions of arity 1 (e.g., not)
m 16 functions of arity 2 (e.g., and, or, ...)
m 2% functions of arity n.
A function of arity n has 2" different combinations of arguments (lines in

the truth table).
A functions maps its arguments either to 1 or 0.

Definition

A set of functions is called functional complete for propositional logic iff it is
possible to express all other functions of propositional logic with functions from
this set.

v

Example
{—, A} is functional complete. nand is functional complete.
{—=, V} is functional complete. nor is functional complete.

40

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of
k colors, such that there is no edge (v, w) € E, with vertices v and w colored

in the same color.

Encoding:

1. Propositional variables: v; ... node
v e Vhascolorj(1<j<k)

2. each node has a color:

Example

2-coloring of ({a, b, c}, {(a, b), (b, c)})

ACV v) '
2. agVaz,biVbe,ciVe
&

4. =(a1 A by), (a2 A b)

veVv 1<j<k

3. each node has just one color:
—(viAv)withve V,1<i<j<k

ai, az, by, b2, ¢, C2

_'(31 A a2)7 _‘(b1 A b2)7 _‘(01 A 02)

ﬁ(b1 AN C1), ﬁ(bz A Cz)

4. neighbors have different colors:
—(vi A w;) with (v,w) € E;1 <i<k

41

A Puzzle

A lady is in one of two rooms called A and B. A tiger is also in A or B. On the door of A there is a sign:
“This room contains a lady, the other room contains a tiger.” The door of room B has a sign: “The tiger
and the lady are not in the same room.” One sign lies. Where is the lady, where is the tiger?

based on a puzzle by Raymond Smullyan

One possible SAT encoding:
signOnA represents that sign of room A says the truth
signOnB represents that sign of room B says the truth
ladylInA or ladyInB represents that lady is in A or B respectively
tigerinA or tigerinB represents that tiger is in A or B respectively
lady is in room A or B, but not in both: (ladyInA V ladyInB) A —(ladylnA A ladyinB
tiger is in room A or B, but not in both: (tigerInA V tigerinB) A —(tigerinA A tigerinB

)
)
one sign lies, one sign is true: (signOnA <+ —signOnB)
sign of room A: signOnA + (ladyInA A tigerinB)

)

sign of room B: signOnB <> (—(tigerinA A ladylnA) A —(tigerinB A ladyInB)

42

