
Institute for Formal Models and Verification
Johannes Kepler University Linz

VL Logik (LVA-Nr. 342208), Winter Semester 2014/2015

Propositional Logic
Version 2014.5

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

1

Propositions

A proposition is a statement that is either true or false.

Example
Alice comes to the party.

One has to wear a shirt.

It rains.

With connectives, propositions can be combined to complex propositions.

Example
Alice comes to the party and Bob comes to the party, but not Cecile.

One has to wear either a shirt or a tie.

If it rains, the street is wet.

2

Propositional Logic

language for representing, combining, and interpreting propositions

two truth values (Boolean domain): true/false, verum/falsum, on/off, 1/0
language elements

atomic propositions (atoms, variables)
no internal structure
either true or false

logic connectives: not (¬), and (∧), or (∨), . . .
operators for construction of composite propositions
concise meaning
argument(s) and return value from Boolean domain

parenthesis

Example
formula of propositional logic: (¬tie ∨ shirt) ∧ (tie ∨ shirt) ∧ (¬tie ∨ ¬shirt)

atoms: tie, shirt

connectives: ¬, ∨, ∧
parenthesis for structuring the expression

3

Background

historical origins: ancient Greeks
two very basic principles:

Law of Excluded Middle: Each expression is either true or false.
Law of Contradiction: No statement is both true and false.

very simple language
no objects, no arguments to propositions
no functions
no quantifiers

solving is easy (relative to other logics)

investigated in philosophy, mathematics, and computer science
propositional logic in computer science:

description of digital circuits
automated verification
planning, scheduling, configuration problems
large research area in theoretical computer science
many applications in industry

4

The Language of Propositional Logic: Syntax

Definition
The set L of well-formed propositional formulas is the smallest set such that

1. >,⊥ ∈ L;

2. P ⊆ L where P is the set of atomic propositions (atoms, variables);

3. if φ ∈ L then (¬φ) ∈ L;

4. if φ, ψ ∈ L then (φ ◦ ψ) ∈ L with ◦ ∈ {∨,∧,↔,→}.

L is the language of propositional logic. The elements of L are propositional
formulas.

In Backus-Naur form (BNF) propositional formulas are described as follows:

φ ::= > | ⊥ | p | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (φ↔ φ) | (φ→ φ)

Example
>
a

(¬a)

(¬>)
(¬(¬a))

(a1∨a2)

(¬(a ∨ b))

(¬(a↔ b))

(((¬a) ∨ a′)↔ (b → c))

(((a1 ∨ a2) ∨ (a3 ∧ ⊥))→ b)

5

Rules of Precedence

To reduce the number of parenthesis, we use the following conventions:

¬ is stronger than ∧
∧ is stronger than ∨
∨ is stronger than→
→ is stronger than↔
Binary operators of same strength are assumed to be left parenthesized
(also called “left associative”)

In case of doubt, uses parenthesis!

Example
¬a ∧ b ∨ c → d ↔ f is the same as (((((¬a) ∧ b) ∨ c)→ d)↔ f).

a′ ∨ a′′ ∨ a′′ ∧ b′ ∨ b′′ is the same as (((a′ ∨ a′′) ∨ (a′′ ∧ b′)) ∨ b′′).

a′ ∧ a′′ ∧ a′′ ∨ b′ ∧ b′′ is the same as (((a′ ∧ a′′) ∧ a′′′) ∨ (b′ ∧ b′′)).

6

Formula Tree

formulas have a tree structure
inner nodes: connectives
leaves: truth constants, variables

default: inner nodes have one child node (negation) or
two nodes as children (other connectives).

tree structure reflects the use of parenthesis

simplification:
disjunction and conjunction may be considered as n-ary operators,
i.e., if a node N and its child node C are of the same kind of connective
(conjunction / disjunction), then the children of C can become direct
children of N and the C is removed.

7

Formula Tree: Example (1/2)
The formula

(a ∨ (b ∨ ¬c))↔ (> ∧ ((a→ ¬b) ∨ (⊥ ∨ a ∨ b)))

has the formula tree

↔

∨

a ∨

b ¬

c

∧

> ∨

→

a ¬

b

∨

∨

⊥ a

b

8

Formula Tree: Example (2/2)
The formula

(a ∨ (b ∨ ¬c))↔ (> ∧ ((a→ ¬b) ∨ (⊥ ∨ a ∨ b)))

has the simplified formula tree

↔

∨

a b ¬

c

∧

> ∨

→

a ¬

b

⊥ a b

9

Subformulas

Definition
An immediate subformula is defined as follows:

truth constants and atoms have no immediate subformula.

only immediate subformula of ¬φ is φ.

formula φ ◦ ψ (◦ ∈ {∧,∨,↔,→}) has immediate subformulas φ and ψ.

The set of subformulas of a formula φ is the smallest set S such that

1. φ ∈ S

2. if ψ ∈ S then all immediate subformulas of ψ are in S.

Informal: A subformula is a part of a formula and is itself a formula.

Example

The subformulas of (a ∨ b)→ (c ∧ ¬¬d) are
{a, b, c, d ,¬d ,¬¬d , a ∨ b, c ∧ ¬¬d , (a ∨ b)→ (c ∧ ¬¬d)}

10

Limboole
SAT-solver
available at http://fmv.jku.at/limboole/
input format:

expr ::= iff
iff ::= implies { ’<->’ implies }
implies ::= or [’->’ or | ’<-’ or]
or ::= and { ’|’ and }
and ::= not { ’&’ not }
not ::= basic | ’!’ not
basic ::= var | ’(’ expr ’)’

where ’var’ is a string over letters, digits, and - _ . [] $ @

Example

In Limboole the formula (a ∨ b)→ (c ∧ ¬¬d) is represented as

((a | b) -> (c & !!d))

11

http://fmv.jku.at/limboole/

Special Formula Structures

literal: variable or a negated variable (also (negated) truth constants)
examples of literals: x ,¬x , y ,¬y
If l is a literal with l = x or l = ¬x then var(l) = x .
For literals we use letter l, k (possibly indexed or primed).
In principle, we identify ¬¬l with l .

clause: disjunction of literals
unary clause (clause of size one): l where l is a literal
empty clause (clause of size zero): ⊥
examples of clauses: (x ∨ y), (¬x ∨ x ′ ∨ ¬x ′′), x ,¬y

cube: conjunction of literals
unary cube (cubes of size one): l where l is a literal
empty cubes (cubes of size zero): >
examples of cubes: (x ∧ y), (¬x ∧ x ′ ∧ ¬x ′′), x ,¬y

12

Special Formula Structures: Negation Normal Form

Definition
Negation Normal Form (NNF) is defined as follows:

Literals and truth constants are in NNF;

φ ◦ ψ (◦ ∈ {∨,∧}) is in NNF iff φ and ψ are in NNF;

no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions, disjunctions, and
negations and negations only occur in front of variables and constants.

If a formula is in negation normal form then

in the formula tree, nodes with negation
symbols only occur directly before leaves.

there are no subformulas of the form ¬φ
where φ is something else than a variable
or a constant.

it does not contain NAND, NOR, XOR,
equivalence, and implication connectives.

Example
The formula

((x ∨ ¬x1) ∧ (x ∨ (¬z ∨ ¬x1)))

is in NNF but

¬((x ∨¬x1)∧ (x ∨ (¬z ∨¬x1)))

is not in NNF.

13

Special Formula Structures: Conjunctive Normal Form

Definition
A propositional formula is in conjunctive normal form (CNF) iff it is a
conjunction of clauses.

A formula in conjunctive normal form is

in negation normal form.

> if it contains no clauses.

easy to check whether it can be refuted (can be set to false).

remark: CNF is the input of most SAT-solvers (DIMACS format).

Example
>
⊥
a

¬a

l1 ∧ l2 ∧ l3

l1 ∨ l2 ∨ l3

(a1 ∨ ¬a2) ∧ (a1 ∨ b2 ∨ a2) ∧ a2

((l11 ∨ . . . ∨ l1m1) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnmn))

14

Special Formula Structures: Disjunctive Normal Form

Definition
A propositional formula is in disjunctive normal form (DNF) if it is a disjunction
of cubes.

A formula in disjunctive normal form is

in negation normal form.

⊥ if it contains no clauses.

easy to check whether it can be satisfied (can be set to true).

Example
>
⊥
a

¬a

l1 ∧ l2 ∧ l3

l1 ∨ l2 ∨ l3

(a1 ∧ ¬a2) ∨ (a1 ∧ b2 ∧ a2) ∧ a2

((l11 ∧ . . . ∧ l1m1) ∨ . . . ∨ (ln1 ∧ . . . ∧ lnmn))

15

Conventions

In general, we use the following conventions unless stated otherwise:

a, b, c, x , y , z denote variables.

l, k denote literals.

φ, ψ, γ denote arbitrary formulas.

C,D denote clauses or cubes (clear from context).

Clauses are also written as sets.
(l1 ∨ . . . ∨ ln) = {l1, . . . ln}.
To add a literal l to clause C, we write C ∪ {l}.
To remove a literal l from clause C, we write C\{l}.

Formulas in CNF are also written as sets of sets.
((l11∨. . .∨l1m1)∧. . .∧(ln1∨. . .∨lnmn)) = {{l11, . . . l1m1}, . . . , {ln1, . . . lnmn}}.
To add a clause C to CNF φ, we write φ ∪ {C}.
To remove a clause C from CNF φ, we write φ\{C}.

16

Elements of Propositional Logic: Negation

unary connective (operator with exactly one argument)

negating the truth value of its argument

alternative notation for ¬φ: !φ, φ,−φ,NOTφ

truth table:
φ ¬φ
0 1
1 0

set view:

Example
If the proposition “It rains.” is true then the negation “It does not rain.” is false.

If proposition a is true then proposition ¬a is false.

If formula ((a ∨ x) ∧ y) is true then formula ¬((a ∨ x) ∧ y) is false.

If proposition b is false, then proposition ¬b is true.

If formula ((b → y) ∧ z) is true then formula ¬((b → y) ∧ z) is false.

17

Elements of Propositional Logic: Conjunction

a conjunction is true iff both arguments are true
alternative notation for φ ∧ ψ: φ&ψ, φψ, φ ∗ ψ, φ · ψ, φANDψ
For (φ1 ∧ . . . ∧ φn) we also write

∧n
i=1 φi .

truth table:

truth table:

φ ψ φ ∧ ψ
0 0 0
0 1 0
1 0 0
1 1 1

set view:

Example
If the proposition “I want tea.” is true and if the proposition “I want cake.” is true then also “I want tea
and I want cake.” is true.

The proposition (a ∧ ¬a) is false.

The proposition (> ∧ a) is true if a is true.

The proposition (⊥ ∧ a) is false.

If (a ∨ b) is true and (¬c ∨ d) is true then (a ∨ b) ∧ (¬c ∨ d) is true.

18

Elements of Propositional Logic: Disjunction

a disjunction is true iff at least one of the arguments is true

alternative notation for φ ∨ ψ: φ|ψ, φ+ ψ, φORψ

For (φ1 ∨ . . . ∨ φn) we also write
∨n

i=1 φi .

truth table:

φ ψ φ ∨ ψ
0 0 0
0 1 1
1 0 1
1 1 1

set view:

Example
The proposition (a ∨ ¬a) is true.

The proposition (> ∨ a) is true.

The proposition (⊥ ∨ a) is true if a is true.

If (a→ b) is true and (¬c → d) then (a→ b) ∨ (¬c → d) is true.

If you see "The menu includes soup or dessert." in a restaurant then this is usually not a disjunction.

19

Elements of Propositional Logic: Implication

an implication is true iff the first argument is false or both arguments are
true
alternative notation for φ→ ψ: φ ⊃ ψ, φIMPLψ
It holds: Verum ex quodlibet. Ex falsum quodlibet.

truth table:

φ ψ φ→ ψ

0 0 1
0 1 1
1 0 0
1 1 1

set view:

Example
If the proposition "It rains." is true and the proposition "The street is wet." is true then the statement
"If it rains, the street is wet." is true.

If the proposition "If it rains, the street is wet." is true and the statement "The street is wet." is true, it
does not necessarily rain.

The propositions (⊥ → a) and (a→ a) are true.

The proposition > → φ is true if φ is true.

20

Elements of Propositional Logic: Equivalence

binary connective

an equivalence is true iff both elements have the same value

alternative notation for φ↔ ψ: φ = ψ, φ ≡ ψ, φ ∼ ψ
truth table:

truth table:

φ ψ φ↔ ψ

0 0 1
0 1 0
1 0 0
1 1 1

set view:

Example
The formula a↔ a is always true.

The formula a↔ b is true iff a is true and b is true or a is false and b is false.

> ↔ ⊥ is never true.

21

Implication vs. Equivalence

In natural language, there is not always a clear distinction between
equivalence and implication. The distinction comes from the context.

equivalence:
Iff a student passes a course, (s)he has more than 50 points on the test.

To pass the course, it is necessary to have more than 50 points.
If a student has more than 50 points on the test then (s)he passes the test.
If the student does not have more than 50 points, (s)he does not pass the
test.
If the student does not pass the test, (s)he did not get at least 50 points.

implication:
If a student passes a course, (s)he has more than 50 points on the test.

This statement would also be true if a student fails even though having
more than 50 points.
Having more than 50 points is necessary, but not sufficient to pass a
course.

22

The Logic Connectives at a Glance

The meaning of the connectives can be summarized as follows:
φ ψ > ⊥ ¬φ φ ∧ ψ φ ∨ ψ φ→ ψ φ↔ ψ φ⊕ ψ φ ↑ ψ φ ↓ ψ
0 0 1 0 1 0 0 1 1 0 1 1
0 1 1 0 1 0 1 1 0 1 1 0
1 0 1 0 0 0 1 0 0 1 1 0
1 1 1 0 0 1 1 1 1 0 0 0

Example

φ ψ ¬(¬φ ∧ ¬ψ) ¬φ ∨ ψ (φ→ ψ) ∧ (ψ → φ)

0 0 0 1 1
0 1 1 1 0
1 0 1 0 0
1 1 1 1 1

Observation: connectives can be expressed by other connectives.

23

Other Connectives

Overall, there are 16 different functions for binary connectives.

So far, we had conjunction, disjunction, implication, equivalence.
Further connectives:

φ 6↔ ψ (also ⊕, xor, antivalence)
φ ↑ ψ (nand, Sheffer Stroke Function)
φ ↓ ψ (nor, Pierce Function)

φ ψ φ 6↔ ψ φ ↑ ψ φ ↓ ψ
0 0 0 1 1
0 1 1 1 0
1 0 1 1 0
1 1 0 0 0

nor and nand can express every other boolean function
(i.e., they are functional complete)

often used for building digital circuits (like processors)

24

Propositional Formulas and Digital Circuits

and gate

A

B nand gate

A

B

or gate

A

B nor gate

A

B

xor gate

A

B not gate
A

25

Example of a Digital Circuit: Half Adder

x y c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

From the truth table, we see that

c ⇔ x ∧ y

and
s ⇔ x ⊕ y .

x

y

s

c

26

Different Notations

Verilog
operator logic circuits C/C++/Java/C# VHDL Limboole

1 > 1 true 1 −
0 ⊥ 0 false 0 −

negation ¬φ φ̄ −φ !φ not φ !φ
conjunction φ ∧ ψ φψ φ · ψ φ && ψ φ and ψ φ & ψ
disjunction φ ∨ ψ φ+ ψ φ || ψ φ or ψ φ | ψ
exclusive or φ 6↔ ψ φ⊕ ψ φ != ψ φ xor ψ −
implication φ→ ψ φ ⊃ ψ − − φ -> ψ

equivalence φ↔ ψ φ = ψ φ == ψ φ xnor ψ φ <-> ψ

Example

(a ∨ (b ∨ ¬c))↔ (> ∧ ((a→ ¬b) ∨ (c ∨ a ∨ b)))

(a + (b + c̄)) = c ((a ⊃ −b) + (0 + a + b))

(a || (b || !c)) == (c && ((! a || ! b) || (false || a || b)))

27

All 16 Binary Functions

φ ψ co
ns

ta
nt

0

no
r

xo
r

na
nd

an
d

eq
ui

va
le

nc
e

im
pl

ic
at

io
n

or co
ns

ta
nt

1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

28

Assignment
A variable can be assigned one of two values from the two-valued domain
B, where B = {1, 0}.
The mapping ν : P → B is called assignment, where P is the set of
atomic propositions.
We sometimes write an assignment ν as set V ⊆ P ∪ {¬x |x ∈ P}:

x ∈ V iff ν(x) = 1
¬x ∈ V iff ν(x) = 0

For n variables, there are 2n assignments possible.
An assignment corresponds to one line in the truth table.

Example
x y z (x ∨ y) ∧ ¬z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

One assignment: ν(x) = 1, ν(y) = 0, ν(z) = 1

Alternative notation: V = {x ,¬y , z}
Observation: A variable assignment determines
the truth value of the formulas containing these
variables.

29

The Language of Propositional Logic: Semantics

Definition
Given assignment ν : P → B, the interpretation [.]ν : L → B is defined by:

[>]ν = 1, [⊥]ν = 0

if x ∈ P then [x]ν = ν(x)

[¬φ]ν = 1 iff [φ]ν = 0

[φ ∨ ψ]ν = 1 iff [φ]ν = 1 or [ψ]ν = 1

An assignment is called
satisfying a formula φ iff [φ]ν = 1.
falsifying a formula φ iff [φ]ν = 0.

An assignment satisfying a formula φ
is a model of φ.

An assignment falsifying a formula φ
is a counter-model of φ.

Example
For formula ((x ∨ y) ∧ ¬z),

{x, y , z} is a counter-model,

{x, y ,¬z} is a model.

30

Properties of Propositional Formulas (1/2)

formula φ is satisfiable iff exists interpretation [.]ν with [φ]ν = 1
check with limboole -s

formula φ is valid iff for all interpretations [.]ν it holds that [φ]ν = 1
check with limboole

a valid formula is called tautology

formula φ is refutable iff exists interpretation [.]ν with [φ]ν = 0
check with limboole

formula φ is unsatisfiable iff [φ]ν = 0 for all interpretations [.]ν
check with limboole -s

an unsatisfiable formula is called contradiction

Example
> is valid.

⊥ is unsatisfiable.

(a ∨ ¬b) ∧ (¬a ∨ b) is refutable.

a→ b is satisfiable.

a↔ ¬a is a contradiction.

(a∨¬b)∧ (¬a∨ b) is satisfiable.

31

Properties of Propositional Formulas (2/2)

A satisfiable formula is
possibly valid
possibly refutable
not unsatisfiable.

A valid formula is
satisfiable
not refutable
not unsatisfiable.

A refutable formula is
possibly satisfiable
possibly unsatisfiable
not valid.

An unsatisfiable formula is
refutable
not valid
not satisfiable.

Example
satisfiable, but not valid: a↔ b

satisfiable and refutable: (a ∨ b) ∧ (¬a ∨ c)

valid, not refutable > ∨ (a ∧ ¬a)

not valid, refutable (⊥ ∨ b)

32

Semantic Equivalence

Definition
Two formula φ and ψ are semantic equivalent (written as φ⇔ ψ) iff forall
interpretations [.]ν it holds that [φ]ν = [ψ]ν .

Note:

⇔ is a meta-symbol, i.e., it is not part of the language.

natural language: if and only if (iff)

φ⇔ ψ iff φ↔ ψ is valid, i.e., we can express semantics by means of
syntactics.

If φ and ψ are not equivalent, we write φ 6⇔ ψ.

Example

a ∨ ¬a 6⇔ b → ¬b

a ∨ ¬a⇔ b ∨ ¬b

(a ∨ b) ∧ ¬(a ∨ b)⇔ ⊥
(a↔ (b ↔ c))⇔ ((a↔ b)↔ c)

33

Examples of Semantic Equivalences
φ ∧ ψ ⇔ ψ ∧ φ φ ∨ ψ ⇔ ψ ∨ φ commutativity

φ ∧ (ψ ∧ γ)⇔ (φ ∧ ψ) ∧ γ φ ∨ (ψ ∨ γ)⇔ (φ ∨ ψ) ∨ γ associativity

φ ∧ (φ ∨ ψ)⇔ φ φ ∨ (φ ∧ ψ)⇔ φ absorption

φ ∧ (ψ ∨ γ)⇔ (φ ∧ ψ) ∨ (φ ∧ γ) φ ∨ (ψ ∧ γ)⇔ (φ ∨ ψ) ∧ (φ ∨ γ) distributivity

¬(φ ∧ ψ)⇔ ¬φ ∨ ¬ψ ¬(φ ∨ ψ)⇔ ¬φ ∧ ¬ψ laws of De Morgan

φ↔ ψ ⇔ (φ→ ψ) ∧ (ψ → φ) φ↔ ψ ⇔ (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ) synt. equivalence

φ ∨ ψ ⇔ ¬φ→ ψ φ→ ψ ⇔ ¬ψ → ¬φ implications

φ ∧ ¬φ⇔ ⊥ φ ∨ ¬φ⇔ > complement

¬¬φ⇔ φ double negation

φ ∧ > ⇔ φ φ ∨ ⊥ ⇔ φ neutrality

φ ∨ > ⇔ > φ ∧ ⊥ ⇔ ⊥

¬> ⇔ ⊥ ¬⊥ ⇔ >

34

Further Connections between Formulas

A formula φ is valid iff ¬φ is unsatisfiable.

A formula φ is satisfiable iff ¬φ is not valid.

The formulas φ and ψ are equivalent iff φ↔ ψ is valid.

The formulas φ and ψ are equivalent iff ¬(φ↔ ψ) is unsatisfiable.

A formula φ is satisfiable iff φ 6↔ ⊥.

35

Logic Entailment

Definition
Let φ1, . . . φn, ψ be propositional formulas. Then φ1, . . . φn entail ψ (written as
φ1, . . . , φn |= ψ) iff [φ1]ν = 1, . . . [φn]ν = 1 implies that [ψ]ν = 1.

Informal meaning: True premises derive a true conclusion.

|= is a meta-symbol, i.e., it is not part of the language.

φ1, . . . φn |= ψ iff (φ1 ∧ . . . ∧ φn)→ ψ is valid, i.e., we can express
semantics by means of syntactics.

If φ1, . . . φn do not entail ψ, we write φ1, . . . φn 6|= ψ.

Example

a |= a ∨ b

a, b |= a ∧ b

a, a→ b |= b

|= a ∨ ¬a

6|= a ∧ ¬a

⊥ |= a ∧ ¬a

36

Satisfiability Equivalence

Definition
Two formulas φ and ψ are satisfiability-equivalent (written as φ⇔SAT ψ) iff
both formulas are satisfiable or both are contradictory.

Satisfiability-equivalent formulas are not necessarily satisfied by the same
assignments.

Satisfiability equivalence is a weaker property than equivalence.

Often sufficient for simplification rules: If the complicated formula is
satisfiable then also the simplified formula is satisfiable.

Example
Positive pure literal elimination rule: If a variable x occurs in a formula but ¬x does not occur in the formula,
then x can be substituted by >. The resulting formula is satisfiability-equivalent.

x ⇔SAT >, but x 6⇔ >
(a ∧ b) ∨ (¬c ∧ a)⇔SAT b ∨ ¬c, but (a ∧ b) ∨ (¬c ∧ a) 6⇔ b ∨ ¬c

37

Representing Functions as CNFs

Problem: Given the truth table of a Boolean function φ. How is the
function represented in propositional logic?

Solution (Representation as CNF):
1. Represent each assignment ν

where φ has value 0 as clause:
If variable x is 1 in ν, add ¬x
to clause.
If variable x is 0 in ν, add x to
clause.

2. Connect all clauses by
conjunction.

Example

a b c φ clauses
0 0 0 0 a ∨ b ∨ c
0 0 1 1
0 1 0 1
0 1 1 0 a ∨ ¬b ∨ ¬c
1 0 0 1
1 0 1 0 ¬a ∨ b ∨ ¬c
1 1 0 0 ¬a ∨ ¬b ∨ c
1 1 1 1

φ = (a∨ b∨ c)∧ (a∨¬b∨¬c)∧
(¬a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c)

38

Representing Functions as DNFs

Problem: Given the truth table of a Boolean function φ. How is the
function represented in propositional logic?

Solution (Representation as DNF):
1. Represent each assignment ν

where φ has value 1 as cube:
If variable x is 1 in ν, add x to
cube.
If variable x is 0 in ν, add ¬x
to cube.

2. Connect all cubes by disjunction.

Example

a b c φ cubes
0 0 0 0
0 0 1 1 ¬a ∧ ¬b ∧ c
0 1 0 1 ¬a ∧ b ∧ ¬c
0 1 1 0
1 0 0 1 a ∧ ¬b ∧ ¬c
1 0 1 0
1 1 0 0
1 1 1 1 a ∧ b ∧ c

φ = (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧
¬c)∨ (a∧¬b ∧¬c)∨ (a∧ b ∧ c)

39

Functional Completeness
In propositional logic there are

2 functions of arity 0 (>,⊥)
4 functions of arity 1 (e.g., not)
16 functions of arity 2 (e.g., and, or, ...)
22n

functions of arity n.
A function of arity n has 2n different combinations of arguments (lines in
the truth table).
A functions maps its arguments either to 1 or 0.

Definition
A set of functions is called functional complete for propositional logic iff it is
possible to express all other functions of propositional logic with functions from
this set.

Example

{¬,∧} is functional complete.

{¬,∨} is functional complete.

nand is functional complete.

nor is functional complete.

40

Encoding the k-Coloring Problem

Given graph (V ,E) with vertices V and edges E . Color each node with one of
k colors, such that there is no edge (v ,w) ∈ E , with vertices v and w colored
in the same color.

Encoding:

1. Propositional variables: vj ... node
v ∈ V has color j (1 ≤ j ≤ k)

2. each node has a color:∧
v∈V

(
∨

1≤j≤k

vj)

3. each node has just one color:
¬(vi ∧ vj) with v ∈ V , 1 ≤ i < j ≤ k

4. neighbors have different colors:
¬(vi ∧ wi) with (v ,w) ∈ E , 1 ≤ i ≤ k

Example
2-coloring of ({a, b, c}, {(a, b), (b, c)})

1. a1, a2, b1, b2, c1, c2

2. a1 ∨ a2, b1 ∨ b2, c1 ∨ c2

3. ¬(a1 ∧ a2),¬(b1 ∧ b2),¬(c1 ∧ c2)

4. ¬(a1 ∧ b1),¬(a2 ∧ b2)
¬(b1 ∧ c1),¬(b2 ∧ c2)

41

A Puzzle

A lady is in one of two rooms called A and B. A tiger is also in A or B. On the door of A there is a sign:
“This room contains a lady, the other room contains a tiger.” The door of room B has a sign: “The tiger
and the lady are not in the same room.” One sign lies. Where is the lady, where is the tiger?

based on a puzzle by Raymond Smullyan

One possible SAT encoding:

signOnA represents that sign of room A says the truth

signOnB represents that sign of room B says the truth

ladyInA or ladyInB represents that lady is in A or B respectively

tigerInA or tigerInB represents that tiger is in A or B respectively

lady is in room A or B, but not in both: (ladyInA ∨ ladyInB) ∧ ¬(ladyInA ∧ ladyInB)

tiger is in room A or B, but not in both: (tigerInA ∨ tigerInB) ∧ ¬(tigerInA ∧ tigerInB)

one sign lies, one sign is true: (signOnA ↔ ¬signOnB)

sign of room A: signOnA ↔ (ladyInA ∧ tigerInB)

sign of room B: signOnB ↔ (¬(tigerInA ∧ ladyInA) ∧ ¬(tigerInB ∧ ladyInB))

42

