

VL Logik (LVA-Nr. 342208), Winter Semester 2014/2015

General Introduction

Version 2014.2

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

First Example: Dress Code

- propositional logic:
 - variables tie shirt
 - negation ¬ (not)
 - disjunction ∨ disjunction (or)
 - conjunction \(\triangle \) conjunction (and)
- three conditions / clauses:
 - clearly one should not wear a tie without a shirt
 not wearing a tie nor a shirt is impolite
 ¬tie ∨ shirt tie ∨ shirt
 - wearing a tie and a shirt is overkill \neg (tie \land shirt) $\equiv \neg$ tie $\lor \neg$ shirt
- is the formula (¬tie ∨ shirt) ∧ (tie ∨ shirt) ∧ (¬tie ∨ ¬shirt) satisfiable?

Second Example: Party Planning (1/3)

We want to plan a party.

Unfortunately, the selection of the guests is not straight forward.

We have to consider the following rules.

- If two people are married, we have to invite them both or none of them.
 Alice is married to Bob and Cecile is married to David.
- If we invite Alice then we also have to invite Cecile.Cecile does not care if we invite Alice but not her.
- 3. David and Eva can't stand each other, so it is not possible to invite both.
- 4. We want to invite Bob and Fred.

Second Example: Party Planning (2/3)

encoding in propositional logic

- propositional variables: inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva, inviteFred
- constraints:
 - 1. invite married: inviteAlice ↔ inviteBob, inviteCecile ↔ inviteDavid
 - 2. if Alice then Cecile: inviteAlice → inviteCecile
 - 3. either David or Eva: ¬ (inviteEva ↔ inviteDavid)
 - 4. invite Bob and Fred: inviteBob ∧ inviteFred
- encoding in propositional logic:

```
(inviteAlice \leftrightarrow inviteBob) \land (inviteCecile \leftrightarrow inviteDavid) \land (inviteAlice \rightarrow inviteCecile) \land \neg (inviteEva \leftrightarrow inviteDavid) \land inviteBob \land inviteFred
```

Second Example: Party Planning (3/3)

encoding in first-order logic

- objects: alice, bob, cecile, david, eva, fred
 - relations: married/2, invited/1
- background knowledge: married(alice,bob), married(cecile,david)
- constraints:
 - 1. $\forall X, Y \text{ (married(X,Y)} \rightarrow \text{ (invited(X)} \leftrightarrow \text{invited(Y)})$
 - 2. if Alice then Cecile: invited(alice) → invited(cecile)
 - 3. either David or Eva: \neg (invited(eva) \leftrightarrow invited(david))
 - invite Bob and Fred: invited(bob) ∧ invited(fred)

Some Words on Abstractions and Modelling

Definition (Model)

A *model* is a simplified reflection of a natural or artificial entity describing only those aspects of the "real" entity relevant for a specific purpose.

Examples for models:

- geography: map
- architecture: construction plan
- informatics: almost everything (e.g., a software system)

A model is an abstraction hiding irrelevant aspects of a system. This allows to focus on the important things.

Example: A map contains information about the streets and about spots of interest, but no details which people live there, which trees grow there, etc.

Modelling Languages (1/2)

- Purposes of models:
 - construction of new systems
 - analysis of complex systems

Question: What is a good language to describe a model?

- Natural Language is
 - universal
 - expressive

but also

- complex, ambiguous, fuzzy.
- Modelling languages have been introduced which are
 - artificially constructed
 - restricted in expressiveness
 - often specific to a domain
 - formally defined with concise semantics

Example

We saw the man with the telescope.

- Did the man have a telescope?
- Did we have a telescope?

Modelling Languages (2/2)

- Examples of modelling languages:
 - programming languages
 - finite automata, regular expression
 - languages for software designs (e.g., UML)
 - logic-based languages
- Modelling languages are distinguishable with respect to their
 - universality and expressiveness
 - degree of formalization
 - representation (graphical, textual)

Definition (Formal Modelling)

Translation of a (possibly ambiguous) specification to an unambiguous specification in a formal language

Examples of Models in Computer Science

UML State Machines

CSP

Road = car.up.ccross.down.Road

Rail = train.darkgreen.tcross.red.Rail

Signal = darkgreen.red.Signal + up.down.Signal

Crossing = (Road || Rail || Signal)

Petri Net

Circuit

Defining a Language

A language definition consists of rules defining the

- syntax of the language how do expressions look?
 - sequences of symbols forming words
 - rules for composing sentences (grammar); checked by parser
 - sometimes multiple (equivalent)
 representations with different goals
 (user-friendliness, processability)
- semantics of the language what do expressions mean?
 - meaning of the words
 - meaning of combinations of words

Example

Definition of natural numbers:

- 0 is a natural number.
- For every natural number n, there is a natural number s(n).

Some words: 0, s(0), s(s(0)), ...

Example

The word s(0) has the meaning 1, the word s(s(s(0))) has the meaning 3.

Logic-Based Languages (Logics)

- A logic consists of
 - \blacksquare a set of symbols (like $\vee, \wedge, \neg, \top, \bot, \forall, \exists \ldots$)
 - \blacksquare a set of variables (like x, y, z, ...)
 - concise syntax: well-formedness of expressions
 - concise semantics: meaning of expressions
- Logics support reasoning for
 - derivation of "new" knowledge
 - proving the truth/falsity of a statement (satisfiability checking)
- Different logics differ in their
 - truth values: binary (true, false), multi-valued (true, false, unknown), fuzzy (between 0 and 1, e.g., [0, 1] as subset of the real numbers)
 - expressiveness (what can be formulated in the logic?)
 - complexity (how expensive is reasoning?)

Automated Reasoning and Inferences

- For reasoning, a logic provides various sets of *rules* (calculi).
- Reasoning is often based on certain syntactical patterns.

General pattern:

(modus ponens)

x holds.

If x holds, then also y holds.

y holds.

- x and y are arbitrary propositions.
- From true premises, we can derive true conclusions.
- From false premises, we can derive everything.

Some Remarks on Inferences

Example

Assume we have modelled the following system

- A comes to the party.
- B comes to the party.
- If A comes to the party, then B does not come to the party.

With the *modus ponens*, we can infer that B does not come to the party.

So, we have some inconsistency in our party model.

- A system is inconsistent, if we can infer that a statement holds and that a statement does not hold at the same time.
- Sometimes we cannot infer anything.

Example

Assume we have modelled the following system:

- If A comes to the party, then B comes to the party.
- C comes to the party.

Then we cannot infer anything.

Logic in Practice

- hardware and software industry:
 - computer-aided verification
 - formal specification

programming: basis for declarative programming language like Prolog

artificial intelligence: automated reasoning (e.g., planning, scheduling)

mathematics: reasoning about systems, mechanical proofs

Logics in this Lectures

In this lecture, we consider different logic-based languages:

- propositional logic (SAT)
 - simple language: only atomic propositions, logic connectives
 - low expressiveness
 - low complexity (satisfiability checking is exponential in the worst case)
 - very successful in industry (e.g., verification)
- first-order logic (predicate logic)
 - rich language: predicates, functions, terms, quantifiers, logical connectives
 - great power of expressiveness
 - high complexity (satisfiability checking is undecidable in general)
 - many applications in mathematics and system specifications
- satisfiability modulo theories (SMT)
 - customizable language: user decides on the included language concepts
 - as much expressiveness as required
 - as much complexity as necessary
 - very popular and successful in industry