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First Example: Dress Code

propositional logic:
variables tie shirt
negation ¬ (not)
disjunction ∨ disjunction (or)
conjunction ∧ conjunction (and)

three conditions / clauses:
clearly one should not wear a tie without a shirt ¬tie ∨ shirt
not wearing a tie nor a shirt is impolite tie ∨ shirt
wearing a tie and a shirt is overkill ¬(tie ∧ shirt) ≡ ¬tie ∨ ¬shirt

is the formula (¬tie ∨ shirt) ∧ (tie ∨ shirt) ∧ (¬tie ∨ ¬shirt)
satisfiable?
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Second Example: Party Planning (1/3)

We want to plan a party.
Unfortunately, the selection of the guests is not straight forward.
We have to consider the following rules.

1. If two people are married, we have to invite them both or none of them.
Alice is married to Bob and Cecile is married to David.

2. If we invite Alice then we also have to invite Cecile.
Cecile does not care if we invite Alice but not her.

3. David and Eva can’t stand each other, so it is not possible to invite both.

4. We want to invite Bob and Fred.
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Second Example: Party Planning (2/3)

encoding in propositional logic

propositional variables:
inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva, inviteFred

constraints:
1. invite married: inviteAlice↔ inviteBob, inviteCecile↔ inviteDavid
2. if Alice then Cecile: inviteAlice→ inviteCecile
3. either David or Eva: ¬ (inviteEva↔ inviteDavid)
4. invite Bob and Fred: inviteBob ∧ inviteFred

encoding in propositional logic:

(inviteAlice↔ inviteBob) ∧ (inviteCecile↔ inviteDavid) ∧
(inviteAlice→ inviteCecile) ∧ ¬ (inviteEva↔ inviteDavid) ∧
inviteBob ∧ inviteFred
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Second Example: Party Planning (3/3)

encoding in first-order logic

objects: alice, bob, cecile, david, eva, fred

relations: married/2, invited/1

background knowledge: married(alice,bob), married(cecile,david)

constraints:
1. ∀X ,Y (married(X,Y)→ ( invited(X)↔ invited(Y) )
2. if Alice then Cecile: invited(alice)→ invited(cecile)
3. either David or Eva: ¬ (invited(eva)↔ invited(david))
4. invite Bob and Fred: invited(bob) ∧ invited(fred)
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Some Words on Abstractions and Modelling

Definition (Model)
A model is a simplified reflection of a natural or artificial entity describing only
those aspects of the “real” entity relevant for a specific purpose.

Examples for models:

geography: map

architecture: construction plan

informatics: almost everything (e.g., a software system)

A model is an abstraction hiding irrelevant aspects of a system.
This allows to focus on the important things.

Example: A map contains information about the streets and about spots of
interest, but no details which people live there, which trees grow there, etc.
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Modelling Languages (1/2)

Purposes of models:
construction of new systems
analysis of complex systems

Question: What is a good language to describe a model?

Natural Language is
universal
expressive

but also
complex, ambiguous, fuzzy.

Example
We saw the man with the telescope.

Did the man have a telescope?

Did we have a telescope?

Modelling languages have been introduced which are
artificially constructed
restricted in expressiveness
often specific to a domain
formally defined with concise semantics
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Modelling Languages (2/2)

Examples of modelling languages:

programming languages
finite automata, regular expression
languages for software designs (e.g., UML)
logic-based languages

Modelling languages are distinguishable with respect to their
universality and expressiveness
degree of formalization
representation (graphical, textual)

Definition (Formal Modelling)
Translation of a (possibly ambiguous) specification to an unambiguous
specification in a formal language
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Examples of Models in Computer Science
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Defining a Language

A language definition consists of rules defining the

syntax of the language
how do expressions look?

sequences of symbols forming words
rules for composing sentences
(grammar); checked by parser
sometimes multiple (equivalent)
representations with different goals
(user-friendliness, processability)

Example
Definition of natural numbers:

0 is a natural number.

For every natural number n, there
is a natural number s(n).

Some words: 0, s(0), s(s(0)), . . .

semantics of the language
what do expressions mean?

meaning of the words
meaning of combinations of words

Example
The word s(0) has the meaning 1, the

word s(s(s(0))) has the meaning 3.
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Logic-Based Languages (Logics)

A logic consists of
a set of symbols (like ∨,∧,¬,>,⊥,∀,∃ . . .)
a set of variables (like x , y , z, . . .)
concise syntax: well-formedness of expressions
concise semantics: meaning of expressions

Logics support reasoning for
derivation of “new” knowledge
proving the truth/falsity of a statement (satisfiability checking)

Different logics differ in their

truth values: binary (true, false), multi-valued (true, false, unknown), fuzzy
(between 0 and 1, e.g., [0, 1] as subset of the real numbers)
expressiveness (what can be formulated in the logic?)
complexity (how expensive is reasoning?)
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Automated Reasoning and Inferences

For reasoning, a logic provides various sets of rules (calculi).

Reasoning is often based on certain syntactical patterns.

General pattern:
(modus ponens)

x holds.
If x holds, then also y holds.
y holds.

x and y are arbitrary propositions.

From true premises, we can derive
true conclusions.

From false premises, we can derive
everything.

Example
A comes to the party.
If A comes to the party, then also B comes.
B comes to the party.

Premises

Conclusion
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Some Remarks on Inferences

Example
Assume we have modelled the following system

A comes to the party.

B comes to the party.

If A comes to the party, then B does not come to the party.

With the modus ponens, we can infer that B does not come to the party.

So, we have some inconsistency in our party model.

A system is inconsistent, if we can infer that a statement holds and that a
statement does not hold at the same time.
Sometimes we cannot infer anything.

Example
Assume we have modelled the following system:

If A comes to the party, then B comes to the party.

C comes to the party.

Then we cannot infer anything.
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Logic in Practice

hardware and software industry:
computer-aided verification
formal specification

programming: basis for declarative programming language like Prolog

artificial intelligence: automated reasoning (e.g., planning, scheduling)

mathematics: reasoning about systems, mechanical proofs
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Logics in this Lectures

In this lecture, we consider different logic-based languages:
propositional logic (SAT)

simple language: only atomic propositions, logic connectives
low expressiveness
low complexity (satisfiability checking is exponential in the worst case)
very successful in industry (e.g., verification)

first-order logic (predicate logic)
rich language: predicates, functions, terms, quantifiers, logical connectives
great power of expressiveness
high complexity (satisfiability checking is undecidable in general)
many applications in mathematics and system specifications

satisfiability modulo theories (SMT)
customizable language: user decides on the included language concepts
as much expressiveness as required
as much complexity as necessary
very popular and successful in industry
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