

VL Logik (LVA-Nr. 342208), Winter Semester 2015/2016

Propositional Logic

Version 2015.2

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

Propositions

A proposition is a statement that is either *true or false*.

Example

- Alice comes to the party.
- One has to wear a shirt.
- It rains.

With connectives, propositions can be combined to *complex propositions*.

Example

- Alice comes to the party and Bob comes to the party, but not Cecile.
- One has to wear either a shirt or a tie.
- If it rains, the street is wet.

2

Propositional Logic

- language for representing, combining, and interpreting propositions
- two truth values (Boolean domain): true/false, verum/falsum, on/off, 1/0
- language elements
 - atomic propositions (atoms, variables)
 - no internal structure
 - either true or false
 - logic connectives: not (\neg) , and (\land) , or (\lor) , . . .
 - operators for construction of composite propositions
 - concise meaning
 - argument(s) and return value from Boolean domain
 - parenthesis

```
formula of propositional logic: (\neg t \vee s) \wedge (t \vee s) \wedge (\neg t \vee \neg s)
```

- atoms: t, s
- connectives: ¬, ∨, ∧
- parenthesis for structuring the expression

Background

- historical origins: ancient Greeks
- two very basic principles:
 - Law of Excluded Middle: Each expression is either true or false.
 - Law of Contradiction: No statement is both true and false.
- very simple language
 - no objects, no arguments to propositions
 - no functions
 - no quantifiers
- solving is easy (relative to other logics)
- investigated in philosophy, mathematics, and computer science
- propositional logic in computer science:
 - description of digital circuits
 - automated verification
 - planning, scheduling, configuration problems
 - large research area in theoretical computer science
 - many applications in industry

The Language of Propositional Logic: Syntax

Definition

The set ${\mathcal L}$ of well-formed propositional formulas is the smallest set such that

- 1. \top , $\bot \in \mathcal{L}$;
- 2. $\mathcal{P} \subseteq \mathcal{L}$ where \mathcal{P} is the set of atomic propositions (atoms, variables);
- 3. if $\phi \in \mathcal{L}$ then $(\neg \phi) \in \mathcal{L}$;
- 4. if $\phi, \psi \in \mathcal{L}$ then $(\phi \circ \psi) \in \mathcal{L}$ with $\circ \in \{ \lor, \land, \leftrightarrow, \rightarrow \}$.

 $\mathcal L$ is the language of propositional logic. The elements of $\mathcal L$ are *propositional formulas*.

In *Backus-Naur form (BNF)* propositional formulas are described as follows:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \lor \phi) \mid (\phi \land \phi) \mid (\phi \leftrightarrow \phi) \mid (\phi \to \phi)$$

- $\blacksquare \ \top \qquad \blacksquare \ (\neg a) \qquad \blacksquare \ (\neg (\neg a)) \qquad \blacksquare \ (\neg (a \lor b)) \qquad \qquad \blacksquare \ (((\neg a) \lor a') \leftrightarrow (b \rightarrow c))$
- \blacksquare a \blacksquare $(\neg \top)$ \blacksquare $(a_1 \lor a_2)$ \blacksquare $(\neg (a \leftrightarrow b))$ \blacksquare $(((a_1 \lor a_2) \lor (a_3 \land \bot)) \rightarrow b)$

Rules of Precedence

To reduce the number of parenthesis, we use the following conventions:

- \blacksquare \neg is stronger than \land
- \blacksquare \land is stronger than \lor
- \blacksquare \lor is stronger than \to
- $lue{}$ \rightarrow is stronger than \leftrightarrow
- Binary operators of same strength are assumed to be left parenthesized (also called "left associative")

In case of doubt, uses parenthesis!

- $\neg a \land b \lor c \rightarrow d \leftrightarrow f$ is the same as $(((((\neg a) \land b) \lor c) \rightarrow d) \leftrightarrow f)$.
- $a' \lor a'' \lor a'' \land b' \lor b''$ is the same as $(((a' \lor a'') \lor (a'' \land b')) \lor b'')$.
- $a' \wedge a'' \wedge a'' \vee b' \wedge b''$ is the same as $(((a' \wedge a'') \wedge a''') \vee (b' \wedge b''))$.

Formula Tree

formulas have a tree structure

inner nodes: connectives

leaves: truth constants, variables

default: inner nodes have <u>one</u> child node (negation) or <u>two</u> nodes as children (other connectives).

- tree structure reflects the use of parenthesis
- simplification:

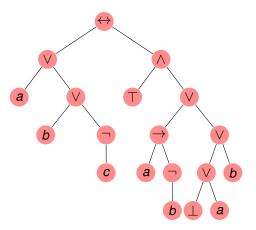
disjunction and conjunction may be considered as n-ary operators, i.e., if a node N and its child node C are of the same kind of connective (conjunction / disjunction), then the children of C can become direct children of N and the C is removed.

Formula Tree: Example (1/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \rightarrow \neg b) \lor (\bot \lor a \lor b)))$$

has the formula tree



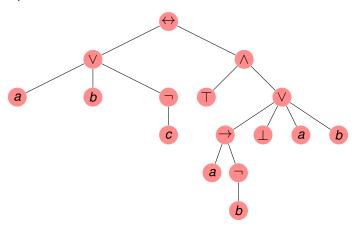
8

Formula Tree: Example (2/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \rightarrow \neg b) \lor (\bot \lor a \lor b)))$$

has the simplified formula tree



9

Subformulas

Definition

An immediate subformula is defined as follows:

- truth constants and atoms have no immediate subformula.
- only immediate subformula of $\neg \phi$ is ϕ .
- $\qquad \qquad \text{formula } \phi \circ \psi \text{ (} \circ \in \{\land, \lor, \leftrightarrow, \rightarrow\}\text{) has immediate subformulas } \phi \text{ and } \psi.$

The set of subformulas of a formula ϕ is the smallest set S such that

- 1. $\phi \in \mathcal{S}$
- 2. if $\psi \in S$ then all immediate subformulas of ψ are in S.

Informal: A subformula is a part of a formula and is itself a formula.

Example

The subformulas of $(a \lor b) \to (c \land \neg \neg d)$ are $\{a, b, c, d, \neg d, \neg \neg d, a \lor b, c \land \neg \neg d, (a \lor b) \to (c \land \neg \neg d)\}$

Limboole

- SAT-solver
- available at http://fmv.jku.at/limboole/
- input format in BNF:

```
 \begin{array}{lll} \langle expr \rangle & ::= & \langle iff \rangle \\ & \langle iff \rangle & ::= & \langle implies \rangle & | & \langle implies \rangle \ "<->" & \langle implies \rangle & ::= & \langle or \rangle & | & \langle or \rangle \ "->" & \langle or \rangle & | & \langle or \rangle \ "<-" & \langle or \rangle \\ & \langle or \rangle & ::= & \langle and \rangle & | & \langle and \rangle \ "\mid " & \langle and \rangle \\ & \langle and \rangle & ::= & \langle not \rangle & | & \langle not \rangle \ & \langle not \rangle & ::= & \langle basic \rangle & | \ "! \ " & \langle not \rangle \\ & \langle basic \rangle & ::= & \langle var \rangle & | \ " \ " & \langle expr \rangle \ ") \ " \end{array}
```

where 'var' is a string over letters, digits, and - _ . [] \$ @

Example

In Limboole the formula $(a \lor b) \to (c \land \neg \neg d)$ is represented as

```
((a \mid b) \rightarrow (c \& !!d))
```

Special Formula Structures

- literal: variable or a negated variable (also (negated) truth constants)
 - \blacksquare examples of literals: $x, \neg x, y, \neg y$
 - If I is a literal with I = x or $I = \neg x$ then var(I) = x.
 - \blacksquare For literals we use letter *I*, *k* (possibly indexed or primed).
 - In principle, we identify $\neg\neg$ / with /.
- clause: disjunction of literals
 - unary clause (clause of size one): / where / is a literal
 - \blacksquare empty clause (clause of size zero): \bot
 - \blacksquare examples of clauses: $(x \lor y)$, $(\neg x \lor x' \lor \neg x'')$, $x, \neg y$
- cube: conjunction of literals
 - unary cube (cubes of size one): / where / is a literal
 - lacktriangle empty cubes (cubes of size zero): \top
 - \blacksquare examples of cubes: $(x \land y)$, $(\neg x \land x' \land \neg x'')$, $x, \neg y$

Special Formula Structures: Negation Normal Form

Definition

Negation Normal Form (NNF) is defined as follows:

- Literals and truth constants are in NNF;
- $\phi \circ \psi$ ($\circ \in \{ \lor, \land \}$) is in NNF iff ϕ and ψ are in NNF;
- no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions, disjunctions, and negations and negations only occur in front of variables and constants.

If a formula is in negation normal form then

- in the formula tree, nodes with negation symbols only occur directly before leaves.
- there are no subformulas of the form $\neg \phi$ where ϕ is something else than a variable or a constant.
- it does not contain NAND, NOR, XOR, equivalence, and implication connectives.

Example

The formula

$$((x \vee \neg x_1) \wedge (x \vee (\neg z \vee \neg x_1)))$$

is in NNF but

$$\neg((x\vee\neg x_1)\wedge(x\vee(\neg z\vee\neg x_1)))$$

is not in NNF.

Special Formula Structures: Conjunctive Normal Form

Definition

A propositional formula is in *conjunctive normal form* (CNF) iff it is a conjunction of clauses.

A formula in conjunctive normal form is

- in negation normal form.
- ⊤ if it contains no clauses.
- easy to check whether it can be refuted (can be set to false).

remark: CNF is the input of most SAT-solvers (DIMACS format).

Example

T

 $I_1 \wedge I_2 \wedge I_3$

■ T

 $\ \ \blacksquare \ \textit{I}_{1} \lor \textit{I}_{2} \lor \textit{I}_{3}$

a

 $(a_1 \vee \neg a_2) \wedge (a_1 \vee b_2 \vee a_2) \wedge a_2$

¬a

 $((I_{11} \vee \ldots \vee I_{1m_1}) \wedge \ldots \wedge (I_{n1} \vee \ldots \vee I_{nm_n}))$

Special Formula Structures: Disjunctive Normal Form

Definition

A propositional formula is in *disjunctive normal form (DNF)* if it is a disjunction of cubes.

A formula in disjunctive normal form is

- in negation normal form.
- \perp if it contains no clauses.
- easy to check whether it can be satisfied (can be set to true).

Example

T

■ ⊥

 $(a_1 \wedge \neg a_2) \vee (a_1 \wedge b_2 \wedge a_2) \vee a_2$

■ a ■ ¬a

 $\qquad \qquad ((I_{11} \wedge \ldots \wedge I_{1m_1}) \vee \ldots \vee (I_{n1} \wedge \ldots \wedge I_{nm_n}))$

Conventions

In general, we use the following conventions unless stated otherwise:

- \blacksquare a, b, c, x, y, z denote *variables*.
- I, k denote literals.
- ϕ, ψ, γ denote *arbitrary formulas*.
- C, D denote clauses or cubes (clear from context).
- Clauses are also written as sets.
 - $(I_1 \vee \ldots \vee I_n) = \{I_1, \ldots I_n\}.$
 - To add a literal I to clause C, we write $C \cup \{I\}$.
 - To remove a literal *I* from clause *C*, we write $C \setminus \{I\}$.
- Formulas in CNF are also written as sets of sets.
 - $\blacksquare \ ((I_{11} \lor \ldots \lor I_{1m_1}) \land \ldots \land (I_{n1} \lor \ldots \lor I_{nm_n})) = \{\{I_{11}, \ldots I_{1m_1}\}, \ldots, \{I_{n1}, \ldots I_{nm_n}\}\}.$
 - To add a clause C to CNF ϕ , we write $\phi \cup \{C\}$.
 - To remove a clause C from CNF ϕ , we write $\phi \setminus \{C\}$.

Elements of Propositional Logic: Negation

- unary connective (operator with exactly one argument)
- negating the truth value of its argument
- **a** alternative notation for $\neg \phi$: $!\phi$, $\overline{\phi}$, $-\phi$, *NOT* ϕ

truth table:
$$\begin{array}{c|c} \phi & \neg \phi \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

set view:

- If the proposition "It rains." is true then the negation "It does not rain." is false.
- If proposition a is true then proposition $\neg a$ is false.
- If formula $((a \lor x) \land y)$ is true then formula $\neg ((a \lor x) \land y)$ is false.
- If proposition b is false, then proposition $\neg b$ is true.
- If formula $((b \to y) \land z)$ is true then formula $\neg ((b \to y) \land z)$ is false.

Elements of Propositional Logic: Conjunction

- a conjunction is true iff both arguments are true
- **alternative notation for** $\phi \wedge \psi$: $\phi \& \psi$, $\phi \psi$, $\phi * \psi$, $\phi \cdot \psi$, $\phi AND\psi$
- For $(\phi_1 \wedge \ldots \wedge \phi_n)$ we also write $\bigwedge_{i=1}^n \phi_i$.
- truth table:

ϕ	ψ	$\phi \wedge \psi$
0	0	0
0	1	0
1	0	0
1	1	1
	•	0 1

set view:

- If the proposition "I want tea." is true and if the proposition "I want cake." is true then also "I want tea and I want cake." is true.
- The proposition $(a \land \neg a)$ is false.
- The proposition ($\top \land a$) is true if a is true.
- The proposition $(\bot \land a)$ is false.
- If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.

Elements of Propositional Logic: Disjunction

- a disjunction is true iff at least one of the arguments is true
- **alternative notation for** $\phi \lor \psi$: $\phi | \psi, \phi + \psi, \phi OR \psi$
- For $(\phi_1 \vee \ldots \vee \phi_n)$ we also write $\bigvee_{i=1}^n \phi_i$.

	φ	ψ	$\phi \lor \psi$
	0	0	0
truth table:	0	1	1
	1	0	1
	1	1	1

set view:

- The proposition $(a \lor \neg a)$ is true.
- The proposition ($\top \lor a$) is true.
- The proposition ($\bot \lor a$) is true if a is true.
- If $(a \to b)$ is true and $(\neg c \to d)$ then $(a \to b) \lor (\neg c \to d)$ is true.
- If you see "The menu includes soup or dessert." in a restaurant then this is usually not a disjunction.

Elements of Propositional Logic: Implication

- an implication is true iff the first argument is false or both arguments are true
- **alternative notation for** $\phi \to \psi$: $\phi \supset \psi$, ϕ *IMPL* ψ
- It holds: Verum ex quodlibet. Ex falsum quodlibet.

	φ	ψ	$\phi \rightarrow \psi$
	0	0	1
truth table:	0	1	1
	1	0	0
	1	1	1

set view:

Example

- If the proposition "It rains." is true and the proposition "The street is wet." is true then the statement "If it rains, the street is wet." is true.
- If the proposition "If it rains, the street is wet." is true and the statement "The street is wet." is true, it does not necessarily rain.
- The propositions $(\bot \to a)$ and $(a \to a)$ are true.

4 0/1 4 1 0/1

 \blacksquare The proposition $\top \to \phi$ is true if ϕ is true.

Elements of Propositional Logic: Equivalence

- binary connective
- an equivalence is true iff both elements have the same value
- **alternative notation for** $\phi \leftrightarrow \psi$: $\phi = \psi, \phi \equiv \psi, \phi \sim \psi$
- truth table:

	4	4	9 17 9
	0	0	1
truth table:	0	1	0
	1	0	0
	1	1	1

 $\phi \quad \psi \mid \phi \leftrightarrow \psi$

set view:

- The formula $a \leftrightarrow a$ is always true.
- The formula $a \leftrightarrow b$ is true iff a is true and b is true or a is false and b is false.
- $\top \leftrightarrow \bot$ is never true.

Implication vs. Equivalence

In natural language, there is not always a clear distinction between equivalence and implication. The distinction comes from the context.

equivalence:

- Iff a student passes a course, (s)he has more than 50 points on the test.
 - To pass the course, it is necessary to have more than 50 points.
 - If a student has more than 50 points on the test then (s)he passes the test.
 - If the student does not have more than 50 points, (s)he does not pass the test.
 - If the student does not pass the test, (s)he did not get at least 50 points.

implication:

- If a student passes a course, (s)he has more than 50 points on the test.
 - This statement would also be true if a student fails even though having more than 50 points.
 - Having more than 50 points is necessary, but not sufficient to pass a course.

The Logic Connectives at a Glance

The meaning of the connectives can be summarized as follows:

ϕ	ψ	Т	\perp	$\neg \phi$	$\phi \wedge \psi$	$\phi \vee \psi$	$\phi \to \psi$	$\phi \leftrightarrow \psi$	$\phi \oplus \psi$	$\phi\uparrow\psi$	$\phi\downarrow\psi$
0	0	1	0	1	0	0	1	1	0	1	1
0	1	1	0	1	0	1	1	0	1	1	0
1	0	1	0	0	0	1	0	0	1	1	0
1	1	1	0	0	1	1	1	1	0	0	0

Example

ϕ	ψ	$\neg(\neg\phi\wedge\neg\psi)$	$\neg \phi \lor \psi$	$(\phi \to \psi) \land (\psi \to \phi)$
0	0	0	1	1
0	1	1	1	0
1	0	1	0	0
1	1	1	1	1

Observation: connectives can be expressed by other connectives.

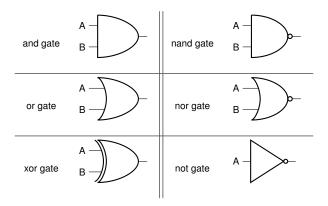
Other Connectives

- Overall, there are 16 different functions for binary connectives.
- So far, we had conjunction, disjunction, implication, equivalence.
- Further connectives:
 - $\bullet \phi \not\leftrightarrow \psi$ (also \oplus , *xor*, antivalence)
 - $\bullet \phi \uparrow \psi$ (*nand*, Sheffer Stroke Function)
 - $\phi \downarrow \psi$ (*nor*, Pierce Function)

ϕ	ψ	$\phi \not\leftrightarrow \psi$	$\phi \uparrow \psi$	$\phi\downarrow\psi$
0	0	0	1	1
0	1	1	1	0
1		1	1	0
1	1	0	0	0

- nor and nand can express every other boolean function (i.e., they are functional complete)
- often used for building digital circuits (like processors)

Propositional Formulas and Digital Circuits

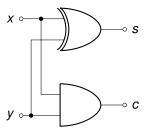


Example of a Digital Circuit: Half Adder

X	У	С	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$c \Leftrightarrow x \wedge y$$

$$s \Leftrightarrow x \oplus y$$
.



Different Notations

			Verilog		
operator	logic	circuits	C/C++/Java/C#	VHDL	Limboole
1	Т	1	true	1	_
0		0	false	0	_
negation	$\neg \phi$	$ar{\phi}$ $-\phi$	$!\phi$	not ϕ	$\mathop{!}\phi$
conjunction	$\phi \wedge \psi$	$\phi\psi$ ϕ	ψ ϕ && ψ	ϕ and ψ	ϕ & ψ
disjunction	$\phi \lor \psi$	$\phi + \psi$	$\phi \mid\mid \psi$	ϕ or ψ	$\phi \mid \psi$
exclusive or	$\phi \not\leftrightarrow \psi$	$\phi \oplus \psi$	$\phi \models \psi$	ϕ xor ψ	_
implication	$\phi \to \psi$	$\phi\supset\psi$	_	_	$\phi \rightarrow \psi$
equivalence	$\phi \leftrightarrow \psi$	$\phi = \psi$	$\phi == \psi$	ϕ xnor ψ	$\phi < -> \psi$

- $\blacksquare (a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (c \lor a \lor b)))$
- $(a + (b + \bar{c})) = c ((a \supset -b) + (0 + a + b))$
- $a \mid (a \mid | (b \mid | !c)) == (c \&\& ((! a \mid | ! b) \mid | (false \mid | a \mid | b)))$

All 16 Binary Functions

ϕ	ψ	constant 0	nor					xor	nand	and	equivalence		implication			or	constant 1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Assignment

- A variable can be assigned one of two values from the two-valued domain \mathbb{B} , where $\mathbb{B} = \{1, 0\}$.
- The mapping $\nu: \mathcal{P} \to \mathbb{B}$ is called *assignment*, where \mathcal{P} is the set of atomic propositions.
- We sometimes write an assignment ν as set $V \subseteq \mathcal{P} \cup \{ \neg x | x \in \mathcal{P} \}$:
 - $\mathbf{x} \in V \text{ iff } \nu(\mathbf{x}) = \mathbf{1}$
 - $\neg x \in V \text{ iff } \nu(x) = \mathbf{0}$
- For n variables, there are 2^n assignments possible.
- An assignment corresponds to one line in the truth table.

- One assignment: $\nu(x) = \mathbf{1}, \nu(y) = \mathbf{0}, \nu(z) = \mathbf{1}$
- Alternative notation: $V = \{x, \neg y, z\}$
- Observation: A variable assignment determines the truth value of the formulas containing these variables.

The Language of Propositional Logic: Semantics

Definition

Given assignment $\nu: \mathcal{P} \to \mathbb{B}$, the interpretation $[.]_{\nu}: \mathcal{L} \to \mathbb{B}$ is defined by:

- ${\color{red} \blacksquare} \ [\top]_{\nu} = \mathbf{1}, [\bot]_{\nu} = \mathbf{0}$
- \blacksquare if $x \in \mathcal{P}$ then $[x]_{\nu} = \nu(x)$
- $\ \ \ \ [\neg\phi]_{\nu}=\mathbf{1} \text{ iff } [\phi]_{\nu}=\mathbf{0}$
- lacksquare $[\phi \lor \psi]_{
 u} = \mathbf{1}$ iff $[\phi]_{
 u} = \mathbf{1}$ or $[\psi]_{
 u} = \mathbf{1}$
- An assignment is called
 - **satisfying** a formula ϕ iff $[\phi]_{\nu} = 1$.
 - **a** *falsifying* a formula ϕ iff $[\phi]_{\nu} = \mathbf{0}$.
- An assignment satisfying a formula ϕ is a *model* of ϕ .
- An assignment falsifying a formula ϕ is a *counter-model* of ϕ .

Example

For formula $((x \lor y) \land \neg z)$,

- \blacksquare $\{x, y, z\}$ is a counter-model,
- $\{x, y, \neg z\}$ is a model.

Properties of Propositional Formulas (1/2)

- formula ϕ is *satisfiable* iff exists interpretation $[.]_{\nu}$ with $[\phi]_{\nu}=1$ check with limboole -s
- formula ϕ is *valid* iff for all interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu}=\mathbf{1}$ check with limboole
- a valid formula is called tautology
- formula ϕ is *refutable* iff exists interpretation $[.]_{\nu}$ with $[\phi]_{\nu} = \mathbf{0}$ check with limboole
- formula ϕ is *unsatisfiable* iff $[\phi]_{\nu} = \mathbf{0}$ for all interpretations $[.]_{\nu}$ check with limboole -s
- an unsatisfiable formula is called contradiction

- \blacksquare \top is valid.
- \perp is unsatisfiable.
- **■** $(a \lor \neg b) \land (\neg a \lor b)$ is refutable.
- $a \rightarrow b$ is satisfiable.
- $a \leftrightarrow \neg a$ is a contradiction.
- **■** $(a \lor \neg b) \land (\neg a \lor b)$ is satisfiable.

Properties of Propositional Formulas (2/2)

- A satisfiable formula is
 - possibly valid
 - possibly refutable
 - not unsatisfiable.
- A valid formula is
 - satisfiable
 - not refutable
 - not unsatisfiable.

- A refutable formula is
 - possibly satisfiable
 - possibly unsatisfiable
 - not valid.
- An unsatisfiable formula is
 - refutable
 - not valid
 - not satisfiable.

- **satisfiable**, but not valid: $a \leftrightarrow b$
- satisfiable and refutable: $(a \lor b) \land (\neg a \lor c)$
- valid, not refutable $\top \lor (a \land \neg a)$
- not valid, refutable $(\bot \lor b)$

Semantic Equivalence

Definition

Two formula ϕ and ψ are *semantic equivalent* (written as $\phi \Leftrightarrow \psi$) iff for all interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu} = [\psi]_{\nu}$.

Note:

- \Rightarrow is a *meta-symbol*, i.e., it is not part of the language.
- natural language: if and only if (iff)
- $\quad \phi \Leftrightarrow \psi \text{ iff } \phi \leftrightarrow \psi \text{ is valid, i.e., we can express semantics by means of syntactics.}$
- If ϕ and ψ are not equivalent, we write $\phi \not\Leftrightarrow \psi$.

Example

 $\blacksquare a \lor \neg a \not\Leftrightarrow b \to \neg b$

 $(a \lor b) \land \neg (a \lor b) \Leftrightarrow \bot$

 $a \lor \neg a \Leftrightarrow b \lor \neg b$

 $\blacksquare (a \leftrightarrow (b \leftrightarrow c)) \Leftrightarrow ((a \leftrightarrow b) \leftrightarrow c)$

Examples of Semantic Equivalences

$\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$	$\phi \lor \psi \Leftrightarrow \psi \lor \phi$	commutativity
$\phi \wedge (\psi \wedge \gamma) \Leftrightarrow (\phi \wedge \psi) \wedge \gamma$	$\phi \lor (\psi \lor \gamma) \Leftrightarrow (\phi \lor \psi) \lor \gamma$	associativity
$\phi \wedge (\phi \vee \psi) \Leftrightarrow \phi$	$\phi \lor (\phi \land \psi) \Leftrightarrow \phi$	absorption
$\phi \wedge (\psi \vee \gamma) \Leftrightarrow (\phi \wedge \psi) \vee (\phi \wedge \gamma)$	$\phi \lor (\psi \land \gamma) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \gamma)$	distributivity
$\neg(\phi \land \psi) \Leftrightarrow \neg\phi \lor \neg\psi$	$\neg(\phi \lor \psi) \Leftrightarrow \neg\phi \land \neg\psi$	laws of De Morgan
$\phi \leftrightarrow \psi \Leftrightarrow (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$	$\phi \leftrightarrow \psi \Leftrightarrow (\phi \land \psi) \lor (\neg \phi \land \neg \psi)$	synt. equivalence
$\phi \lor \psi \Leftrightarrow \neg \phi \to \psi$	$\phi \to \psi \Leftrightarrow \neg \psi \to \neg \phi$	implications
$\phi \wedge \neg \phi \Leftrightarrow \bot$	$\phi \lor \neg \phi \Leftrightarrow \top$	complement
$\neg\neg\phi \Leftrightarrow \phi$		double negation
$\phi \wedge \top \Leftrightarrow \phi$	$\phi \lor \bot \Leftrightarrow \phi$	neutrality
$\phi \vee \top \Leftrightarrow \top$	$\phi \land \bot \Leftrightarrow \bot$	
¬T⇔⊥	¬⊥⇔⊤	

Further Connections between Formulas

A formula ϕ is valid iff $\neg \phi$ is unsatisfiable.

 \blacksquare A formula ϕ is satisfiable iff $\neg \phi$ is not valid.

- The formulas ϕ and ψ are equivalent iff $\phi \leftrightarrow \psi$ is valid.
- The formulas ϕ and ψ are equivalent iff $\neg(\phi \leftrightarrow \psi)$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\phi \nleftrightarrow \bot$.

Logic Entailment

Definition

Let $\phi_1, \ldots, \phi_n, \psi$ be propositional formulas. Then ϕ_1, \ldots, ϕ_n entail ψ (written as $\phi_1, \ldots, \phi_n \models \psi$) iff $[\phi_1]_{\nu} = \mathbf{1}, \ldots [\phi_n]_{\nu} = \mathbf{1}$ implies that $[\psi]_{\nu} = \mathbf{1}$.

Informal meaning: True premises derive a true conclusion.

- |= is a *meta-symbol*, i.e., it is not part of the language.
- $\phi_1, \dots \phi_n \models \psi$ iff $(\phi_1 \land \dots \land \phi_n) \rightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.
- If $\phi_1, \ldots \phi_n$ do not entail ψ , we write $\phi_1, \ldots \phi_n \not\models \psi$.

$$a \models a \lor b$$

$$\blacksquare$$
 $a, b \models a \land b$

$$\blacksquare$$
 $a, a \rightarrow b \models b$

$$\blacksquare \models a \lor \neg a$$

$$\blacksquare \not\models a \land \neg a$$

$$\bot \models a \land \neg a$$

Satisfiability Equivalence

Definition

Two formulas ϕ and ψ are *satisfiability-equivalent* (written as $\phi \Leftrightarrow_{SAT} \psi$) iff both formulas are satisfiable or both are contradictory.

- Satisfiability-equivalent formulas are not necessarily satisfied by the same assignments.
- Satisfiability equivalence is a weaker property than equivalence.
- Often sufficient for simplification rules: If the complicated formula is satisfiable then also the simplified formula is satisfiable.

Example

Positive pure literal elimination rule: If a variable x occurs in a formula but $\neg x$ does not occur in the formula, then x can be substituted by \top . The resulting formula is satisfiability-equivalent.

- $x \Leftrightarrow_{SAT} \top$, but $x \not\Leftrightarrow \top$
- $(a \land b) \lor (\neg c \land a) \Leftrightarrow_{SAT} b \lor \neg c, \text{ but } (a \land b) \lor (\neg c \land a) \not\Leftrightarrow b \lor \neg c$

Representing Functions as CNFs

Problem: Given the truth table of a Boolean function ϕ . How is the function represented in propositional logic?

Solution (Representation as CNF):

- 1. Represent each assignment ν where ϕ has value **0** as clause:
 - If variable x is **1** in ν , add $\neg x$ to clause.
 - If variable x is $\mathbf{0}$ in ν , add x to clause.
- Connect all clauses by conjunction.

E	Example								
	а	b	С	$ \phi $	clauses				
	0	0	0	0	$a \lor b \lor c$				
	0	0	1	1					
	0	1	0	1					
	0	1	1	0	$a \lor \neg b \lor \neg c$				
	1	0	0	1					
	1	0	1	0	$\neg a \lor b \lor \neg c$				
	1	1	0	0	$\neg a \lor \neg b \lor c$				
	1	1	1	1					
' "									
$\phi = (a \lor b \lor c) \land (a \lor \neg b \lor \neg c) \land $									
$(\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor c)$									

Representing Functions as DNFs

Problem: Given the truth table of a Boolean function ϕ . How is the function represented in propositional logic?

Solution (Representation as DNF):

- 1. Represent each assignment ν where ϕ has value **1** as cube:
 - If variable x is **1** in ν , add x to cube.
 - If variable x is **0** in ν , add $\neg x$ to cube.
- 2. Connect all cubes by disjunction.

E	Example									
	а	b	С	ϕ	cubes					
	0	0	0	0						
	0	0	1	1	$\neg a \land \neg b \land c$					
	0	1	0	1	$\neg a \land b \land \neg c$					
	0	1	1	0						
	1	0	0	1	$a \wedge \neg b \wedge \neg c$					
	1	0	1	0						
	1	1	0	0						
	1	1	1	1	$a \wedge b \wedge c$					
	. "									
	$\phi = (\neg a \land \neg b \land c) \lor (\neg a \land b \land)$									
[-	$\neg c) \lor (a \land \neg b \land \neg c) \lor (a \land b \land c)$									

Functional Completeness

- In propositional logic there are
 - \blacksquare 2 functions of arity 0 (\top , \bot)
 - 4 functions of arity 1 (e.g., not)
 - 16 functions of arity 2 (e.g., and, or, ...)
 - \blacksquare 2^{2ⁿ} functions of arity *n*.
- A function of arity n has 2ⁿ different combinations of arguments (lines in the truth table).
- A functions maps its arguments either to 1 or 0.

Definition

A set of functions is called *functional complete* for propositional logic iff it is possible to express all other functions of propositional logic with functions from this set.

- nand is functional complete.
- nor is functional complete.

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k colors, such that there is no edge $(v, w) \in E$, with vertices v and w colored in the same color.

Encoding:

- 1. Propositional variables: v_j ... node $v \in V$ has color j (1 $\leq j \leq k$)
- 2. each node has a color:

$$\bigwedge_{v\in V}(\bigvee_{1\leq j\leq k}v_j)$$

- 3. each node has just one color: $\neg (v_i \land v_i)$ with $v \in V$, $1 \le i < j \le k$
- 4. neighbors have *different colors*:

$$\neg(v_i \land w_i)$$
 with $(v, w) \in E, 1 \le i \le k$

Example

2-coloring of $({a, b, c}, {(a, b), (b, c)})$

- 1. $a_1, a_2, b_1, b_2, c_1, c_2$
- 2. $a_1 \lor a_2, b_1 \lor b_2, c_1 \lor c_2$
- 3. $\neg(a_1 \land a_2), \neg(b_1 \land b_2), \neg(c_1 \land c_2)$
- 4. $\neg (a_1 \wedge b_1), \neg (a_2 \wedge b_2) \\ \neg (b_1 \wedge c_1), \neg (b_2 \wedge c_2)$

A Puzzle

A lady is in one of two rooms called A and B. A tiger is also in A or B. On the door of A there is a sign: "This room contains a lady, the other room contains a tiger." The door of room B has a sign: "The tiger and the lady are not in the same room." One sign lies. Where is the lady, where is the tiger?

based on a puzzle by Raymond Smullyan

One possible SAT encoding:

- signOnA represents that sign of room A says the truth
- signOnB represents that sign of room B says the truth
- ladyInA or ladyInB represents that lady is in A or B respectively
- **tigerInA** or **tigerInB** represents that tiger is in A or B respectively
- lady is in room A or B, but not in both: (ladylnA \vee ladylnB) $\wedge \neg$ (ladylnA \wedge ladylnB)
- tiger is in room A or B, but not in both: (tigerInA \vee tigerInB) $\wedge \neg$ (tigerInA \wedge tigerInB)
- one sign lies, one sign is true: $(signOnA \leftrightarrow \neg signOnB)$
 - sign of room A: $signOnA \leftrightarrow (ladylnA \land tigerlnB)$
- sign of room B: $signOnB \leftrightarrow (\neg(tigerInA \land ladyInA) \land \neg(tigerInB \land ladyInB))$