
Institute for Formal Models and Verification
Johannes Kepler University Linz

VL Logik (LVA-Nr. 342208), Winter Semester 2015/2016

Satisfiabiliy Modulo Theories Basics
Version 2015.1

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

1

Satisfiability Modulo Theories (SMT)

Example

f (x) 6= f (y) ∧ x + u = 3 ∧ v + y = 3 ∧ u = a[z] ∧ v = a[w] ∧ z = w

formulas in first-order logic
usually without quantifiers, variables implicitly existentially quantified
but with sorted / typed symbols and
functions / constants / predicates are interpreted
SMT quantifier reasoning weaker than in first-order theorem proving (FO)
much richer language compared to propositional logic (SAT)

no need to axiomatize “theories” using axioms with quantifiers
important theories are “built-in”:
uninterpreted functions, equality, arithmetic, arrays, bit-vectors . . .
focus is on decidable theories, thus fully automatic procedures

state-of-the-art SMT solvers essentially rely on SAT solvers
SAT solver enumerates solutions to a propositional skeleton
propositional and theory conflicts recorded as propositional clauses
DPLL(T), CDCL (T), read DPLL modulo theory T or CDCL modulo T

SMT sweet spot between SAT and FO: many (industrial) applications
standardized language SMTLIB used in applications and competitions

2

Buggy Program

int middle (int x, int y, int z) {
int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

this program is supposed to return the middle (median) of three numbers

3

Test Suite for Buggy Program

middle (1, 2, 3) = 2

middle (1, 3, 2) = 2

middle (2, 1, 3) = 1

middle (2, 3, 1) = 2

middle (3, 1, 2) = 2

middle (3, 2, 1) = 2

middle (1, 1, 1) = 1

middle (1, 1, 2) = 1

middle (1, 2, 1) = 1

middle (2, 1, 1) = 1

middle (1, 2, 2) = 2

middle (2, 1, 2) = 2

middle (2, 2, 1) = 2

This black box test suite has to be
generated manually.

How to ensure that it covers all cases?

Need to check outcome of each run
individually and determine correct result.

Difficult for large programs.

Better use specification and check it.

4

Specification for Middle

let a be an array of size 3 indexed from 0 to 2

a[i] = x ∧ a[j] = y ∧ a[k] = z
∧

a[0] ≤ a[1] ∧ a[1] ≤ a[2]
∧

i 6= j ∧ i 6= k ∧ j 6= k
→

m = a[1]

median obtained by sorting and taking middle element in the order
coming up with this specification is a manual process

5

Encoding of Middle Program in Logic

int m = z;
if (y < z) {
if (x < y)
m = y;

else if (x < z)
m = y;

} else {
if (x > y)
m = y;

else if (x > z)
m = x;

}
return m;

}

(y < z ∧ x < y → m = y)
∧

(y < z ∧ x ≥ y ∧ x < z → m = y)
∧

(y < z ∧ x ≥ y ∧ x ≥ z → m = z)
∧

(y ≥ z ∧ x > y → m = y)
∧

(y ≥ z ∧ x ≤ y ∧ x > z → m = x)
∧

(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z)

this formula can be generated automatically by a compiler

6

Checking Specification as SMT Problem
let P be the encoding of the program, and S of the specification

program is correct if “P → S” is valid
program has a bug if “P → S” is invalid
program has a bug if negation of “P → S” is satisfiable (has a model)
program has a bug if “P ∧ ¬S” is satisfiable (has a model)

(y < z ∧ x < y → m = y) ∧
(y < z ∧ x ≥ y ∧ x < z → m = y) ∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z) ∧
(y ≥ z ∧ x > y → m = y) ∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x) ∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z) ∧
a[i] = x ∧ a[j] = y ∧ a[k] = z ∧
a[0] ≤ a[1] ∧ a[1] ≤ a[2] ∧
i 6= j ∧ i 6= k ∧ j 6= k ∧
m 6= a[1]

7

Encoding with Linear Integer Arithmetic in SMTLIB2

(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int) (declare-fun m () Int)
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y))) ; fix by replacing last ’y’ by ’x’
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun a () (Array Int Int))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))
(check-sat)
(get-model)
(exit)

8

Checking Middle Example with Z3

$ z3 middle-buggy.smt2 $ z3 middle-fixed.smt2
sat unsat
(model

(define-fun i () Int 1)
(define-fun a () (Array Int Int) (_ as-array k!0))
(define-fun j () Int 0)
(define-fun k () Int 2)
(define-fun m () Int 2281)
(define-fun z () Int 2283)
(define-fun y () Int 2281)
(define-fun x () Int 2282)
(define-fun k!0 ((x!1 Int)) Int

(ite (= x!1 2) 2283
(ite (= x!1 1) 2282
(ite (= x!1 0) 2281 2283)))) see also http://rise4fun.com

)

9

http://rise4fun.com

Encoding with Bit-Vector Logic in SMTLIB2

(set-logic QF_AUFBV)
(declare-fun x () (_ BitVec 32)) (declare-fun y () (_ BitVec 32))
(declare-fun z () (_ BitVec 32)) (declare-fun m () (_ BitVec 32))
(assert (=> (and (bvult y z) (bvult x y)) (= m y)))
(assert (=> (and (bvult y z) (bvuge x y) (bvult x z)) (= m y))) ; fix last ’y’->’x’
(assert (=> (and (bvult y z) (bvuge x y) (bvuge x z)) (= m z)))
(assert (=> (and (bvuge y z) (bvugt x y)) (= m y)))
(assert (=> (and (bvuge y z) (bvule x y) (bvugt x z)) (= m x)))
(assert (=> (and (bvuge y z) (bvule x y) (bvule x z)) (= m z)))
(declare-fun i ()(_ BitVec 2)) (declare-fun j ()(_ BitVec 2)) (declare-fun k ()(_ BitVec 2))
(declare-fun a ()(Array (_ BitVec 2) (_ BitVec 32)))
(assert (and (bvule #b00 i) (bvule i #b10) (bvule #b00 j) (bvule j #b10)))
(assert (and (bvule #b00 k) (bvule k #b10)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (bvule (select a #b00) (select a #b01)))
(assert (bvule (select a #b01) (select a #b10)))
(assert (distinct i j k)) (assert (distinct m (select a #b01)))
(check-sat) (get-model) (exit)

10

Checking Middle Example with Boolector

$ boolector -m middle32-buggy.smt2
sat
x 10111000111111001011111011111011
y 01111000111111001011111011111011
z 11110000111111011011111011111001
m 01111000111111001011111011111011
i 01
j 00
k 10
a[10] 11110000111111011011111011111001
a[01] 10111000111111001011111011111011
a[00] 01111000111111001011111011111011

$ boolector middle32-fixed.smt2
unsat

see also http://fmv.jku.at/boolector

11

http://fmv.jku.at/boolector

Theory of Linear Real Arithmetic (LRA)

constants: integers, rationals, etc.

predicates: equality =, disequality 6=, inequality ≤ (strict <) etc.

functions: addition +, subtraction −, multiplication · by constant only

Example
z ≤ x − y ∧ x + 2 · y ≤ 5 ∧ 4 · z − 2 · x ≥ y

we focus on conjunction of inequalities as in the example first
equalities “=” can be replaced by two inequalities “≤”

disequalities replaced by disjunction of strict inequalities

combination with SAT allows arbitrary formulas (not just conjunctions)
related to optimization problems solved in operation research (OR)

OR algorithms are usually variants of the classic SIMPLEX algorithm

12

Fourier-Motzkin Elimination Procedure by Example

z ≤ x − y ∧ x + 2 · y ≤ 5 ∧ 4 · z − 2 · x ≥ y

pick pivot variable, e.g. x , and isolate it on one side with coefficient 1

z + y ≤ x ∧ x ≤ 5− 2 · y ∧ 4 · z − y ≥ 2 · x
z + y ≤ x ∧ x ≤ 5− 2 · y ∧ 2 · z − 0.5 · y ≥ x
z + y ≤ x ∧ x ≤ 5− 2 · y ∧ x ≤ 2 · z − 0.5 · y (1)

eliminate x by adding A ≤ B for all inequalities A ≤ x and x ≤ B

z + y ≤ 5− 2 · y ∧ z + y ≤ 2 · z − 0.5 · y
z ≤ 5− 3 · y ∧ 1.5 · y ≤ z (2)

and same procedure with new pivot variable, e.g. z, and eliminate z

1.5 · y ≤ 5− 3 · y
y ≤ 10/9 (3)

(3) has (as one) solution y = 0 ∈ (−∞, 10/9] or y = 1 ∈ (−∞, 10/9]
(2) then allows z = 0 ∈ [0, 5] z = 2 ∈ [1.5, 2]
(1) then forces x = 0 forces x = 3 thus satisfiable

13

Theory of Uninterpreted Functions and Equality

functions as in first-order (FO): sorted / typed without interpretation
equality as single interpreted predicate

congruence axiom ∀x , y : x = y → f (x) = f (y)
similar variants for functions with multiple arguments
always assumed in FO if equality is handled explicitly (interpreted)

uninterpreted functions allow to abstract from concrete implementations
in hardware (HW) verification abstract complex circuits (e.g. multiplier)
in software (SW) verification abstract sub routine computation

congruence closure algorithms using fast union-find data structures
start with all terms (and sub-terms) in different equivalence classes
if t1 = t2 is an asserted literal merge equivalence classes of t1 and t2
for all elements of an equivalence class check congruence axiom

let t1 and t2 be two terms in the same equivalence class
if there are terms f (t1) and f (t2) merge their equivalence classes

continue until the partition of terms in equivalence classes stabilizes
if asserted disequality t1 6= t2 exists with t1, t2 in the same equivalence
class then unsatisfiable otherwise satisfiable

14

Example for Uninterpreted Functions and Equality
assume flattened structure where all sub-terms are identified by variables

[x | y | t | u | v]

x = y︸ ︷︷ ︸
asserted literal x = y puts x and y in to the same equivalence class

∧ x = g(y) ∧ t = g(x) ∧ u = f (x , t) ∧ v = f (y , x) ∧ u 6= v

[x y | t | u | v]

x = y∧ x = g(y) ∧ t = g(x)︸ ︷︷ ︸
apply congruence axiom since x and y in same equivalence class

∧u = f (x , t) ∧ v = f (y , x) ∧ u 6= v

[x y t | u | v]

x = y ∧ x = g(y) ∧ t = g(x)∧ u = f (x , t) ∧ v = f (y , x)︸ ︷︷ ︸
apply congruence axiom since y , x and t are all in same equivalence class

∧u 6= v

[x y t | u v]

x = y ∧ x = g(y) ∧ t = g(x) ∧ u = f (x , t) ∧ v = f (y , x)∧ u 6= v

u and v in the same equivalence class but u 6= v asserted
thus unsatisfiable 15

