
Institute for Formal Models and Verification
Johannes Kepler University Linz

VL Logik (LVA-Nr. 342208), Winter Semester 2015/2016

Satisfiabiliy Modulo Theories Details
Version 2015.1

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

1

Propositional Skeleton

Example (arbitrary LRA formula)

x 6= y ∧ (2 ∗ x ≤ z ∨ ¬ (x − y ≥ z ∧ z ≤ y))

eliminate 6= by disjunction

(x < y︸ ︷︷ ︸
a

∨ x > y︸ ︷︷ ︸
b

) ∧ (2 ∗ x ≤ z︸ ︷︷ ︸
c

∨ ¬(x − y ≥ z︸ ︷︷ ︸
d

∧ z ≤ y︸ ︷︷ ︸
e

))

which is abstracted to a propositional formula called “propositional skeleton”

(a ∨ b) ∧ (c ∨ ¬(d ∧ e)) with α(x < y) = a, α(x > y) = b, . . .

SAT solver enumerates solutions, e.g., a = b = c = d = e = 1

check solution literals with theory solver, e.g., Fourier-Motzkin

spurious solutions (disproven by theory solver) added as “lemma”,
e.g. ¬(a ∧ b ∧ c ∧ c ∧ d ∧ e) or just ¬(a ∧ b) after minimization

continue until SAT solver says unsatisfiable or theory solver satisfiable
2

Lemmas on Demand

this is an extremely “lazy” version of DPLL (T) / CDCL(T)

LemmasOnDemand(φ)

ψ = PropositionalSkeleton(φ)
let α be the abstraction function, mapping theory literals to prop. literals

while ψ has satisfiable assignment σ
let l1, . . . , ln be all the theory literals with σ(α(li)) = 1
check conjunction L = l1 ∧ · · · ∧ ln with theory solver
if theory solver returns satisfying assignment ρ return satisfiable
determine “small” sub-set {k1, . . . , km} ⊆ {l1, . . . , ln} where

K = k1 ∧ · · · ∧ km remains unsatisfiable (by theory solver)
add lemma ¬K to ψ, actually replace ψ by ψ ∧ α(¬K)

return unsatisfiable

note that these lemmas ¬K are all clauses

3

Minimal Unsatisfiable Set (MUS)
motivation: the lemmas we add in “lemmas on demand” should be small

MUS︷ ︸︸ ︷
(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬c) ∧ (¬a ∨ c)∧(a ∨ ¬c) ∧ (a ∨ c)︸ ︷︷ ︸

MUS

given an unsatisfiable set of “constraints” S (set of literals, or clauses)
an MUS M is a sub-set M ⊆ S such that

M is still unsatisfiable
any M ′ ⊂ M (with M ′ 6= M) is satisfiable

so an MUS is a “minimal” inconsistent subset
all constraints in the MUS are necessary for M to be inconsistent
so one minimal way to explain inconsistency of S

note that “being inconsistent” is a monotone property
if A ⊆ B is a set of constraints
if A is unsatisfiable then B is unsatisfiable
essential for algorithms to compute an MUS

4

Iterative Destructive Algorithm for MUS Computation

destructive = remove constraints from an over-approximation of an MUS

IterativeDestructiveMUS(S)

M = S
D = S

while D 6= ∅
pick constraint C ∈ D
if M\{C} unsatisfiable remove C from M
remove C from D

return M

needs exactly |S| satisfiability checks

any-time algorithm: preliminary result M remains inconsistent
can stop any time

5

QuickXplain Variant of MUS Computation
quickly “zoom in” on one MUS (particularly if there is a small one)

QuickMUSRecursive(D)

if M\D is satisfiable

if |D| > 1
let D = L ∪ R with |L|, |R| > 0 . . . ≥ b |D|

2 c
QuickMUSRecursive(L)
QuickMUSRecursive(R)

else remove D from M

QuickMUS(S)

global variable M = S
QuickMUSRecursive(S)

return M

needs at most 2 · |S| and at least |M| satisfiability checks
6

Theory of Arrays

functions “read” and “write”: read(a, i), write(a, i, v)

axioms

∀a, i, j : i = j → read(a, i) = read(a, j) array congruence

∀a, v , i, j : i = j → read(write(a, i, v), j) = v read over write 1

∀a, v , i, j : i 6= j → read(write(a, i, v), j) = read(a, j) read over write 2

used to model memory (HW and SW)

eagerly reduce arrays to uninterpreted functions by eliminating “write”

read(write(a, i, v), j) replaced by (i = j ? v : read(a, j))

more sophisticated non-eager algorithms are usually faster

such as for instance the lemmas-on-demand algorithm in Boolector

7

Simple Array Example

i 6= j ∧ u = read(write(a, i, v), j) ∧ v = read(a, j) ∧ u 6= v

eliminate “write”

i 6= j ∧ u = (i = j ? v : read(a, j)) ∧ v = read(a, j) ∧ u 6= v

simplify conditional by assuming “i 6= j”

i 6= j ∧ u = read(a, j) ∧ v = read(a, j) ∧ u 6= v

applying congruence for both “read”

i 6= j ∧ u = read(a, j) = read(a, j) = v ∧ u 6= v

which is clearly unsatisfiable

8

More Complex Array Example for Checking Aliasing

original optimized

assert (i != k); int t = a[k];
a[i] = a[k]; a[i] = t;
a[j] = a[k]; a[j] = t;

i 6= k t = read(a, k)
b1 = write(a, i, t) c1 = write(a, i, t)
b2 = write(b1, j, s) c2 = write(c1, j, t)
s = read(b1, k)

original 6= optimized iff b2 6= c2

b2 6= c2 iff ∃l with read(b2, l) 6= read(c2, l)

9

Aliasing Example Continued 1

thus original 6= optimized iff

i 6= k
t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
read(b2, l) 6= read(c2, l)

satisfiable

10

Aliasing Example Continued 2

thus original 6= optimized iff

i 6= k
t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = read(b2, l)
v = read(c2, l)
u 6= v

satisfiable

11

Aliasing Example Continued 3

after eliminating c2

i 6= k
t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = read(b2, l)
v = (i = j ? t : read(c1, l))
u 6= v

12

Aliasing Example Continued 4

after eliminating c2, c1

i 6= k
t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = read(b2, l)
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

13

Aliasing Example Continued 5

after eliminating c2, c1, b2

i 6= k
t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = read(b1, k)
u = (l = j ? s : read(b1, l))
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

14

Aliasing Example Continued 6

after eliminating c2, c1, b2, b1

i 6= k
t = read(a, k)
b1 = write(a, i, t)
b2 = write(b1, j, s)
c1 = write(a, i, t)
c2 = write(c1, j, t)
s = (k = i ? t : read(a, k))
u = (l = j ? s : (l = i ? t : read(a, l)))
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

15

Aliasing Example Continued 7

result after “write” elimination

i 6= k
t = read(a, k)
s = (k = i ? t : read(a, k))
u = (l = j ? s : (l = i ? t : read(a, l)))
v = (l = j ? t : (l = i ? t : read(a, l)))
u 6= v

16

Aliasing Example Continued 8
after eliminating conditionals (if-then-else)

i 6= k
t = read(a, k)
k = i → s = t
k 6= i → s = read(a, k)
l = j → u = s
l 6= j ∧ l = i → u = t
l 6= j ∧ l 6= i → u = read(a, l)
l = j → v = t
l 6= j ∧ l = i → v = t
l 6= j ∧ l 6= i → v = read(a, l)
u 6= v

now treat “read” as uninterpreted function (say f)
check with lemmas-on-demand and congruence closure

17

Ackermann’s Reduction

formula in theory of uninterpreted functions with equality and disequality:

1. flatten terms by introducing new variables as before
remove nested function applications
equalities and disequalities have at least one variable on left or right side

2. instantiate congruence axiom in all possible ways:
replace all function applications f (u) by new variable f u

replace all function applications f (u, v) by new variable f u,v etc.

3. if formula contains f u and f v add u = v → f u = f v as lemma etc.
4. use decision procedure for theory of equality and disequality

if the resulting formula after the first two steps contains n variables
then only need to consider domains with n elements
or bit-vectors of length dlog2ne bits
allows eager encoding into SAT

“eagerly” generates all instantiations of the congruence axioms as lemmas

18

Example of Ackermann’s Reduction

we start with an already flattened formula

x = f (y) ∧ y = f (x) ∧ x 6= y

after second step

x = f y ∧ y = f x ∧ x 6= y

after adding lemmas in second step

x = f y ∧ y = f x ∧ x 6= y ∧ (x = y → f x = f y)

resulting formula has 4 variables thus needs bit-vectors of length 2

19

Example of Ackermann’s Reduction to Bit-Vectors

$ cat ack.smt2
(set-logic QF_BV)
(declare-fun x () (_ BitVec 2))
(declare-fun y () (_ BitVec 2))
(declare-fun fx () (_ BitVec 2))
(declare-fun fy () (_ BitVec 2))
(assert (and (= x fy) (= y fx) (distinct x y) (=> (= x y) (= fx fy))))
(check-sat)
(exit)
$ boolector ack.smt2 -m -d
sat
x 0
y 3
fx 3
fy 0

20

Theory of Bit-Vectors

allows “bit-precise” reasoning
caputures semantics of low-level languages like assembler, C, C++, . . .
Java / C# also use two-complement representations for int
modelling of hardware / circuits on the word-level (RTL)
important for security applications and precise test case generation

many operations
logical operations, bit-wise operations (and, or)
equalities, inequalities, disequalities
shift, concatenation, slicing
addition, multiplication, division, modulo, . . .

main approach is reduction to SAT through bit-blasting
reduction of bit-vector operations similar to circuit synthesis
Ackermann’s Reduction only needs equality and disequality

21

Bit-Blasting Bit-Vector Equality
for each bit-vector equality u = v with u and v bit-vectors of width w

introduce new propositional variables for individual bits

u1, . . . , uw v1, . . . , vw

replace u = v by new propositional variable eu=v

add the propositional constraint

eu=v ↔
w∧

i=1

(ui ↔ vi)

disequality u 6= v is replaced by ¬eu=v

resulting formula satisfiable iff original formula satisfiable
22

Bit-Blasting Ackermann Example

x = f y ∧ y = f x ∧ x 6= y ∧ (x = y → f x = f y)

now replacing the bit-vector equalities and the disequality by new e variables

ex=f y ∧ ey=f x ∧ ¬ex=y ∧ (ex=y → ef x=f y)

and adding the equality constraints

ex=f y ↔ (x1 ↔ f y
1) ∧ (x2 ↔ f y

2)
ey=f x ↔ (y1 ↔ f x

1) ∧ (y2 ↔ f x
2)

ex=y ↔ (x1 ↔ y1) ∧ (x2 ↔ y2)
ef x=f y ↔ (f x

1 ↔ f y
1) ∧ (f x

2 ↔ f y
2)

gives an “equi-satisfiable” formula which can be checked by SAT solver

23

Bit-Blasting Ackermann Example in Limboole Syntax

$ cat ackbitblasted.limboole
exfy & eyfx & !exy & (exy -> efxfy) &
(exfy <-> (x1 <-> fy1) & (x2 <-> fy2)) &
(eyfx <-> (y1 <-> fx1) & (y2 <-> fx2)) &
(exy <-> (x1 <-> y1) & (x2 <-> y2)) &
(efxfy <-> (fx1 <-> fy1) & (fx2 <-> fy2))
$ limboole ackbitblasted.limboole -s|grep -v SAT|sort
efxfy = 0
exfy = 1
exy = 0
eyfx = 1
fx1 = 0
fx2 = 1
fy1 = 1
fy2 = 1
x1 = 1
x2 = 1
y1 = 0
y2 = 1

24

