Institute for Formal Models and Verification ' z U
Johannes Kepler University Linz

JOHANNES KEPLER
UNIVERSITY LINZ

VL Logik (LVA-Nr. 342208), Winter Semester 2015/2016

Satisfiabiliy Modulo Theories Details

Version 2015.1

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

Propositional Skeleton

Example (arbitrary LRA formula)
x#Zy AN (2«x<z V =(x—y>z A z<y))

eliminate # by disjunction

xX<yV x> NR2xx<zValx—y>zANz<
(x<y by) (< (};_ <))
a (o e

”

which is abstracted to a propositional formula called “propositional skeleton
(avb)A(cVv-(dnre) with alx<y)=a alx>y)=b,...
SAT solver enumerates solutions, e.g., a=b=c=d=e=1

check solution literals with theory solver, e.g., Fourier-Motzkin

spurious solutions (disproven by theory solver) added as “lemma”,
eg.~(aAbAcAcANdAe) orjust—(an b)after minimization

continue until SAT solver says unsatisfiable or theory solver satisfiable

Lemmas on Demand

this is an extremely “lazy” version of DPLL (T) / CDCL(T)

LemmasOnDemand(¢)

1 = PropositionalSkeleton(¢)
let a be the abstraction function, mapping theory literals to prop. literals

while v has satisfiable assignment o
let hi, ..., I, be all the theory literals with o (a(/;)) = 1
check conjunction L = 4 A --- A I, with theory solver
if theory solver returns satisfying assignment p return satisfiable
determine “small” sub-set {ki, ..., kn} C {h,..., I} where
K = ki N\ --- A ky, remains unsatisfiable (by theory solver)
add lemma —K to 1), actually replace v by 1 A a(—K)

return unsatisfiable

note that these lemmas —K are all clauses

Minimal Unsatisfiable Set (MUS)

motivation: the lemmas we add in “lemmas on demand” should be small
MUS
(av-b)A(aVvb)A(—aV-c)A(-aVec)A(aV —c)A(aVc)
MUS

given an unsatisfiable set of “constraints” S (set of literals, or clauses)
an MUS M is a sub-set M C S such that
m M is still unsatisfiable
m any M’ C M (with M’ # M) is satisfiable
so an MUS is a “minimal” inconsistent subset
m all constraints in the MUS are necessary for M to be inconsistent
= so one minimal way to explain inconsistency of S
note that “being inconsistent” is a monotone property
m if A C Bis a set of constraints
m if Ais unsatisfiable then B is unsatisfiable
m essential for algorithms to compute an MUS

lterative Destructive Algorithm for MUS Computation

destructive = remove constraints from an over-approximation of an MUS

IterativeDestructiveMUS(S)
M=S
D=8
while D # ()
pick constraint C € D
if M\{C} unsatisfiable remove C from M
remove C from D

return M

needs exactly | S| satisfiability checks

any-time algorithm: preliminary result M remains inconsistent
can stop any time

QuickXplain Variant of MUS Computation

quickly “zoom in” on one MUS (particularly if there is a small one)

QuickMUSRecursive(D)
if M\ D is satisfiable
if | D] > 1
let D = LU Rwith |L],|R] >0
QuickMUSRecursive(L)
QuickMUSRecursive(R)

else remove D from M

QuickMUS(S)
global variable M = S
QuickMUSRecursive(S)
return M

needs at most 2 - | S| and at least | M| satisfiability checks

Vv

I\)‘E

Theory of Arrays

functions “read” and “write”: read(a, i), write(a, i, v)

axioms
Va,i,j: i=j— read(a, i) = read(a,j) array congruence
Va,v,i,j:i=j— read(write(a,i,v),j) = v read over write 1

Va,v,i,j:i# j— read(write(a, i, v),j) = read(a,j) read over write 2

used to model memory (HW and SW)
eagerly reduce arrays to uninterpreted functions by eliminating “write”

read(write(a, i, v),j) replacedby (i=j ? v:read(a,j))

more sophisticated non-eager algorithms are usually faster
such as for instance the lemmas-on-demand algorithm in Boolector

Simple Array Example

i#j N u=read(write(a,i,v),j) N v=read(a,j) N u#v
eliminate “write”
i#jNu=(i=j7? v:read(aj) N v=read(a,j) N u#v
simplify conditional by assuming “i # j”
i#j N u=read(a,j) N v=read(a,j) N u#v
applying congruence for both “read”
i#j N u=read(aj)=read(a,j) =v AN u#£v

which is clearly unsatisfiable

More Complex Array Example for Checking Aliasing

original optimized

assert (i 1= k); int t = a[k];

a[i] = a[k]; afi =t;

a[j] = alk]; afl =t;

i # K t = read(a, k)

by = write(a, i, t) ¢y = write(a, /i, t)

by = write(by, J, S) ¢ = write(cy, j, t)
s = read(b, k)

original # optimized iff bo # Co

by # ¢ iff 3/ with read(by, /) # read(c,/)

Aliasing Example Continued 1

thus original # optimized iff

i+ k

t = read(a, k)

by = write(a, i, t)

b = write(b1 s S)

¢ = write(a, i, t)

¢ = write(cy, /, t)

s = read(by, k)
read(be, /) # read(cz, /)

satisfiable

Aliasing Example Continued 2

thus original # optimized iff

i+ k

t = read(a, k)

by = write(a, i, t)
by = write(by, J, S)
¢y = write(a, i, t)
co = write(c, /, t)
s = read(by, k)

u = read(bo, /)

v = read(cy, /)

u#v

satisfiable

Aliasing Example Continued 3

after eliminating ¢,

i+ k

t = read(a, k)

by = write(a, i, t)

by = write(by, j, S)

¢ = write(a, i, t)

co = write(cy, /, t)

s = read(by, k)

u = read(by, /)

v=(i=j ? t:read(c,/))
uv

Aliasing Example Continued 4

after eliminating ¢, ¢4

i+ k

t = read(a, k)

by = write(a, i, t)

by = write(by, J, S)

¢y = write(a, i, t)

¢ = write(cy, /, t)

s = read(by, k)

u = read(bo, /)
v=(=j?t:(I=i7 t:read(a,l)))
u#v

Aliasing Example Continued 5

after eliminating ¢, ¢y, bo

i+ k

t = read(a, k)

by = write(a, i, t)

by = write(by, /, S)

¢y = write(a, i, t)

co = write(cy, /, t)

s = read(by, k)

u=(l=j 7 s:read(by,/))
v=(=j?t:(I=i7? t:read(a,l)))
u#v

Aliasing Example Continued 6

after eliminating ¢, ¢y, b2, by

i+ k

t = read(a, k)

by = write(a, i, t)

b, = write(by, /, S)

¢y = write(a, i, t)

co = write(cy, /, t)

s=(k=1i7 t:read(a,k))
u=(l=j7?7s:(I=i7t:read(al)))
v=(I=j?t:(I=i7 t:read(a,l)))
u#v

Aliasing Example Continued 7

result after “write” elimination

i+ k

t =read(a, k)

s=(k=1i7 t:read(a,k))
u=(l=j?7s:(I=i7?t:read(a,l)))
v=(I=j?t:(I=i7 t:read(a,l)))
u#v

Aliasing Example Continued 8

after eliminating conditionals (if-then-else)

i+ k

t = read(a, k)

k=i — s=t

k#i — s=read(a, k)
I=j - u=s

I£jANl=i > u=t
I£jNI#i — u=read(a,/)
l=j = v=t
I4iANl=i— v=t
I#4jNI#i — v =read(a,l)
u#v

now treat “read” as uninterpreted function (say f)
check with lemmas-on-demand and congruence closure

Ackermann’s Reduction

formula in theory of uninterpreted functions with equality and disequality:

1. flatten terms by introducing new variables as before

m remove nested function applications

m equalities and disequalities have at least one variable on left or right side
2. instantiate congruence axiom in all possible ways:

m replace all function applications f(u) by new variable f*

m replace all function applications f(u, v) by new variable f*-* etc.
3. if formula contains Y and f¥ add u = v — fY = f¥ as lemma etc.

4. use decision procedure for theory of equality and disequality
m if the resulting formula after the first two steps contains n variables
m then only need to consider domains with n elements
m or bit-vectors of length [log,n]| bits
m allows eager encoding into SAT

“eagerly” generates all instantiations of the congruence axioms as lemmas

Example of Ackermann’s Reduction

we start with an already flattened formula
x=Hy)Ny=1(x)Ax#y
after second step
x=ANy=F~FAx#£y
after adding lemmas in second step
x=FANy=FAx#yANx=y—>F=1F)

resulting formula has 4 variables thus needs bit-vectors of length 2

Example of Ackermann’s Reduction to Bit-Vectors

$ cat ack.smt2

(set-logic QF_BV)
(declare-fun x () (_ BitVec 2))
(declare-funy () (_ BitVec 2))
(declare-fun fx () (_ BitVec 2))
(declare-fun fy () (BitVec 2))
(assert (and (= x fy) (= y fx) (distinct x y) (=> (= x y) (= fx fy))))
(check-sat)

(exit)

$ boolector ack.smt2 -m -d
sat

x0

y3

fx 3

fy 0

20

Theory of Bit-Vectors

allows “bit-precise” reasoning
m caputures semantics of low-level languages like assembler, C, C++, . ..
m Java/ C# also use two-complement representations for int
m modelling of hardware / circuits on the word-level (RTL)
m important for security applications and precise test case generation
many operations
m logical operations, bit-wise operations (and, or)
m equalities, inequalities, disequalities
m shift, concatenation, slicing
m addition, multiplication, division, modulo, . ..
main approach is reduction to SAT through bit-blasting
m reduction of bit-vector operations similar to circuit synthesis
m Ackermann’s Reduction only needs equality and disequality

21

Bit-Blasting Bit-Vector Equality

for each bit-vector equality u = v with v and v bit-vectors of width w
introduce new propositional variables for individual bits

U, ..., Uy Vi, oy Vi

replace u = v by new propositional variable e,—,

add the propositional constraint

w

Eu—y < /\(u,- < V)
i=1

disequality u # v is replaced by —e,—,

resulting formula satisfiable iff original formula satisfiable

22

Bit-Blasting Ackermann Example

x=FANy=FAxZyAN(x=y—F=F)

now replacing the bit-vector equalities and the disequality by new e variables
ex=pr N\ 8y—px N m€x—y N (6x=y — ep—p)

and adding the equality constraints

ey & (o)A (e)
Ey=p < (y YN (v < &)
Ex=y (X1 <~ y1) AN (X2 > yg)
Cpx—fy (fX — fy) A (fX <~ fév)

gives an “equi-satisfiable” formula which can be checked by SAT solver

23

Bit-Blasting Ackermann Example in Limboole Syntax

$ cat ackbitblasted.limboole

exfy & eyfx & lexy & (exy -> efxfy) &
(exfy <-> (x1 <> fy1) & (x2 <-> fy2)) &
(eyfx <-> (y1 <-> fx1) & (y2 <-> x2)) &
(exy <> (x1 <->y1) & (x2 <-> y2)) &
(efxfy <-> (fx1 <-> fy1) & (fx2 <-> fy2))
$ limboole ackbitblasted.limboole -s|grep -v SAT|sort
efxfy =0

exfy =1

exy=0

eyfx =1

fx1=0

fx2 =1

fyl =1

fy2 =1

x1=1

x2 =1

y1=0

y2 =1

24

