
Institute for Formal Models and Verification
Johannes Kepler University Linz

VL Logik (LVA-Nr. 342208), Winter Semester 2015/2016

General Introduction
Version 2015.1

Armin Biere (biere@jku.at)
Martina Seidl (martina.seidl@jku.at)

1

Abstractions and Modelling

Definition (Model)
A model is a simplified reflection of a natural or artificial entity describing only
those aspects of the “real” entity relevant for a specific purpose.

Examples for models:

geography: map

architecture: construction plan

informatics: almost everything (e.g., a software system)

A model is an abstraction hiding irrelevant aspects of a system.
This allows to focus on the important things.

Example: A map contains information about the streets and about spots of
interest, but no details which people live there, which trees grow there, etc.

2

Modelling Languages (1/3)

Purposes of models:
construction of new systems
analysis of complex systems

Question: What is a good language to describe a model?

Natural Language is
universal
expressive

but also
complex, ambiguous, fuzzy.

Example
We saw the man with the telescope.

Did the man have a telescope?

Did we have a telescope?

Modelling languages have been introduced which are
artificially constructed
restricted in expressiveness
often specific to a domain
formally defined with concise semantics

3

Modelling Languages (2/3)

Examples of modelling languages in computer science:

programming languages
finite automata, regular expression
languages for software designs (e.g., UML)
logic-based languages

UML State Machines CSP
 stm Class Model

Serv erClient

idle conPend connected

identifiedfromPendrcptInput

rcptPend dataInput dataPend

waiting

ready

accepting

fromRcv d rcptRcv d
uData /sData

uRetry /sCon

ok /sHelo

ok
uMail /sFromok

uRcpt /sRcpt

uQuit /sDone

uCon /sCon

ok

sDone

ok

sCon /ok

sHelo
/ok

sFrom /ok

sRcpt /ok

sData /ok

Road = car .up.ccross.down.Road

Rail = train.darkgreen.tcross.red.Rail

Signal = darkgreen.red.Signal +
up.down.Signal

Crossing = (Road || Rail || Signal)

Petri Net Circuit

produce receive

deliver consume
Q’

QD

Q’

QD

4

Modelling Languages (3/3)

Modelling languages are distinguishable (amongst other properties) w.r.t.

universality and expressiveness

degree of formalization

representation (graphical, textual)

Definition (Formal Modelling)
Translation of a (possibly ambiguous) specification to an unambiguous
specification in a formal language

Languages of logic provide a very powerful tool for
formal modeling.

5

Defining a Language

A language definition consists of rules defining the

syntax of the language
how do expressions look?

sequences of symbols forming words
rules for composing sentences
(grammar); checked by parser
sometimes multiple (equivalent)
representations with different goals
(user-friendliness, processability)

Example
Definition of natural numbers:

0 is a natural number.

For every natural number n, there
is a natural number s(n).

Some words: 0, s(0), s(s(0)), . . .

semantics of the language
what do expressions mean?

meaning of the words
meaning of combinations of words

Example
The word s(0) has the meaning 1, the

word s(s(s(0))) has the meaning 3.

6

Backus-Naur Form (BNF)
notation technique for describing the syntax of a language
elements:

symbols enclosed in brackets 〈〉 are variables (non-terminal symbols)
the symbol ::= indicates the definition of a non-terminal symbol
the symbol | means “or”
all other symbols stand for themselves (sometimes they are quoted, e.g.,
“->”)

Example
Definition of the language of decimal numbers in BNF:

〈number〉 ::= 〈integer〉 “.” 〈integer〉
〈integer〉 ::= 〈digit〉 | 〈digit〉 〈integer〉
〈digit〉 ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Some words: 0.0, 1.1, 123.546, 01.10000, . . . 7

Logic-Based Languages (Logics)

A logic consists of
a set of symbols (like ∨,∧,¬,>,⊥,∀,∃ . . .)
a set of variables (like x , y , z, . . .)
concise syntax: well-formedness of expressions
concise semantics: meaning of expressions

Logics support reasoning for
derivation of “new” knowledge
proving the truth/falsity of a statement (satisfiability checking)

Different logics differ in their

truth values: binary (true, false), multi-valued (true, false, unknown), fuzzy
(between 0 and 1, e.g., [0, 1] as subset of the real numbers)
expressiveness (what can be formulated in the logic?)
complexity (how expensive is reasoning?)

8

Example: Party Planning

We want to plan a party.
Unfortunately, the selection of the guests is not straight forward.
We have to consider the following rules.

1. If two people are married, we have to invite them both or none of them.
Alice is married to Bob and Cecile is married to David.

2. If we invite Alice then we also have to invite Cecile.
Cecile does not care if we invite Alice but not her.

3. David and Eva can’t stand each other, so it is not possible to invite both.

4. We want to invite Bob and Fred.

Question: Can we find a guest list, which is consistent with rules 1-4?

9

Syntax of Propositional Logic
In BNF-like form:

〈formula〉 ::= > | ⊥ | 〈variable〉 | 〈connective_f 〉
〈connective_f 〉 ::= 〈conn1〉 〈formula〉 | 〈formula〉 〈conn2〉 〈formula〉

〈conn1〉 ::= ¬
〈conn2〉 ::= ∧ | ∨ | → | ↔

where

> is the truth constant which is always true
⊥ is the truth constant which is always false
a propositional variable can take the values true and false
¬ is the negation
∧ is the conjunction (logical and)
∨ is the disjunction (logical or)
→ is the implication
↔ is the equivalence 10

Party Planning with Propositional Logic

propositional variables:
inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva, inviteFred

constraints:
1. invite married: inviteAlice↔ inviteBob, inviteCecile↔ inviteDavid
2. if Alice then Cecile: inviteAlice→ inviteCecile
3. either David or Eva: ¬ (inviteEva↔ inviteDavid)
4. invite Bob and Fred: inviteBob ∧ inviteFred

encoding in propositional logic:

(inviteAlice↔ inviteBob) ∧ (inviteCecile↔ inviteDavid) ∧
(inviteAlice→ inviteCecile) ∧ ¬ (inviteEva↔ inviteDavid) ∧
inviteBob ∧ inviteFred

11

Syntax of First-Order Logic: Terms

In BNF-like form:

〈term〉 ::= 〈constant〉 | 〈variable〉 | 〈fun_sym〉 ‘(’ 〈term〉 (‘,’ 〈term〉)∗ ‘)’

where

function symbols (〈fun_sym〉) have an arity (number of arguments).

(‘,’ 〈term〉)∗ means zero or more repetitions of “, 〈term〉 ”.

Example

Let s be a function symbol with arity 1 and y a variable. Then s(y) is a
term.

Let ‘remainder’ be a function symbol with arity 2, a and b constants. Then
remainder(a, b) and remainder(a, s(a)) are terms.

Let ‘openInterval’ be a function symbol with arity 2, a and b constants.
Then openInterval(a, b) is a term.

12

Syntax of First-Order Logic: Formulas
In BNF-like form:

〈formula〉 ::= > | ⊥ | 〈atomic_f 〉 | 〈connective_f 〉 | 〈quantifier_f 〉
〈atomic_f 〉 ::= 〈pred_sym〉 ‘(’ 〈term〉 (‘,’ 〈term〉)∗ ‘)’

〈connective_f 〉 ::= 〈conn1〉 〈formula〉 | 〈formula〉 〈conn2〉 〈formula〉
〈conn1〉 ::= ¬
〈conn2〉 ::= ∧ | ∨ | → | ↔

〈quantifier_f 〉 ::= 〈quantifier〉 〈variable〉 ‘:’ 〈formula〉
〈quantifier〉 ::= ∀ | ∃

where
∀ is the universal quantifier

∀x : p(x) is reads as “forall possible values of x , the unary predicate p is
true.”

∃ is the existential quantifier
∃x : p(x) is reads as “there is a value of x such that the unary predicate p
is true.”

13

Party Planning with First-Order Logic

objects (constants): alice, bob, cecile, david, eva, fred

relations (predicates): married/2, invited/1

background knowledge: married(alice,bob), married(cecile,david)

constraints:
1. ∀X ,Y (married(X,Y)→ (invited(X)↔ invited(Y))
2. if Alice then Cecile: invited(alice)→ invited(cecile)
3. either David or Eva: ¬ (invited(eva)↔ invited(david))
4. invite Bob and Fred: invited(bob) ∧ invited(fred)

encoding in first-order logic:

∀X ,Y (married(X,Y)→ (invited(X)↔ invited(Y)) ∧
invited(alice)→ invited(cecile) ∧
¬ (invited(eva)↔ invited(david)) ∧ invited(bob) ∧ invited(fred)

14

Automated Reasoning and Inferences

Logical languages allow the inference of new knowledge (“reasoning”).

For reasoning, a logic provides various sets of rules (calculi).

Reasoning is often based on certain syntactical patterns.

General pattern:
(modus ponens)

x holds.
If x holds, then also y holds.
y holds.

x and y are arbitrary propositions.

From true premises, we can derive
true conclusions.

From false premises, we can derive
everything.

Example
A comes to the party.
If A comes to the party, then also B comes.
B comes to the party.

Premises

Conclusion

15

Some Remarks on Inferences

Example
Assume we have modelled the following system

A comes to the party.

B comes to the party.

If A comes to the party, then B does not come to the party.

With the modus ponens, we can infer that B does not come to the party.

So, we have some inconsistency in our party model.

A system is inconsistent, if we can infer that a statement holds and that a
statement does not hold at the same time.
Sometimes we cannot infer anything.

Example
Assume we have modelled the following system:

If A comes to the party, then B comes to the party.

C comes to the party.

Then we cannot infer anything.

16

Logic in Practice

hardware and software industry:
computer-aided verification
formal specification

programming: basis for declarative programming language like Prolog

artificial intelligence: automated reasoning (e.g., planning, scheduling)

mathematics: reasoning about systems, mechanical proofs

17

Logics in this Lectures

In this lecture, we consider different logic-based languages:
propositional logic (SAT)

simple language: only atomic propositions, logic connectives
low expressiveness
low complexity (satisfiability checking is exponential in the worst case)
very successful in industry (e.g., verification)

first-order logic (predicate logic)
rich language: predicates, functions, terms, quantifiers, logical connectives
great power of expressiveness
high complexity (satisfiability checking is undecidable in general)
many applications in mathematics and system specifications

satisfiability modulo theories (SMT)
customizable language: user decides on the included language concepts
as much expressiveness as required
as much complexity as necessary
very popular and successful in industry

18

