
First Order Predicate Logic
Syntax and Informal Semantics

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 1/22

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at
http://www.risc.jku.at

Why Predicate Logic?

I Propositional logic is about “sentences” and their combination.
“Sentence” something that can be true or false.

I Propositional logic cannot describe:
1. “concrete objects” of a certain domain,
2. functional relationships,
3. statements about “for all” objects or about “for some” objects.

I (First order) Predicate logic is an extension of propositional logic,
which (among other things!) allows to express these.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 2/22

http://www.risc.jku.at

Natural Language Formulations in Predicate Logic

I Alex is Tom’s sister.

sister(Alex,Tom)

I Tom has a sister in Linz.

∃x : sister(x ,Tom)∧ lives-in(x ,Linz)

I Tom has two sisters.

∃x ,y : x 6= y ∧ sister(x ,Tom)∧ sister(y ,Tom)

I Tom has no brother.

¬∃x : brother(x ,Tom) i.e. there does not exist a brother of Tom
∀x : ¬brother(x ,Tom) i.e. everybody is not a brother of Tom

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 3/22

http://www.risc.jku.at

Recall Syntax: Terms and Formulas
In mathematics we want to speak about objects and properties of these
objects.

The language of predicate logic provides terms and formulas, where

I terms should stand for objects and
I formulas should stand for properties that can be true or false.

〈expression〉 ::= 〈term〉 | 〈formula〉
〈term〉 ::= 〈constant〉 | 〈variable〉 | 〈fun_sym〉 (〈term〉 (, 〈term〉)∗)

〈formula〉 ::=> | ⊥ | 〈atomic_f 〉 | 〈connective_f 〉 | 〈quantifier_f 〉
〈atomic_f 〉 ::= 〈pred_sym〉 (〈term〉 (, 〈term〉)∗)

〈connective_f 〉 ::= 〈conn1〉 〈formula〉 | 〈formula〉 〈conn2〉 〈formula〉
〈conn1〉 ::= ¬
〈conn2〉 ::= ∧ | ∨ | → | ↔

〈quantifier_f 〉 ::= 〈quantifier〉 〈variable〉 : 〈formula〉
〈quantifier〉 ::= ∀ | ∃

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 4/22

http://www.risc.jku.at

Abstract Syntax vs. Concrete Syntax

I Abstract syntax: one particular standard form to describe expressions.
I Concrete syntax: “concrete way” to write/display expressions.
I Notation: just another word for concrete syntax.

Abstract syntax must allow unique identification of “type of the expression”
and its “subexpressions”.

One expression in abstract syntax can have many different forms in
concrete syntax.

The language of mathematics is very rich in notations (e.g. subscripts,
superscripts, writing things one above the other, etc.).

Well-chosen notation should convey intuitive meaning.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 5/22

http://www.risc.jku.at

Syntax: Notations and Conventions

I Function/Predicate symbols are often written using
infix/prefix/postfix/matchfix operators:

a < b < (a,b)
∫

f
∫

(f)
a
b /(a,b)]a,b[openInterval(a,b)

f ′ derivative(f) f → a converges(f ,a)

I Variable arity (overloading, no details):

a+b +(a,b) a+b+ c


+(a,b,c)
+(+(a,b),c)
+(a,+(b,c))

(beyond syntax!)

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 6/22

http://www.risc.jku.at

Syntax: Conditions in Quantifiers
We want: quantifier does not range over entire domain, “filter” values by a
condition C .

Solution:

∀x : C → F ∃x : C ∧F

Notation:

∀C : F ∃C : F

The quantified variable must be recognized from C .

Example

∀x ∈ N : x |10 ∃x < y : x |10

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 7/22

http://www.risc.jku.at

Syntax: Examples

a is less than b
I Abstract syntax: < (a,b)
I Notation: a < b

The open interval between a and b
I Abstract syntax: openInterval(a,b)
I Notation:]a,b[, (a,b)

The remainder of a divided by b
I Abstract syntax: remainder(a,b)
I Notation: mod(a,b), a mod p, a (mod p), a%b

f converges to a
I Abstract syntax: converges(f ,a)
I Notation: f → a, lim f = a, f (n) n→∞−→ a, lim

n→∞
f (n) = a

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 8/22

http://www.risc.jku.at

Syntax: Free and Bound Variables

Every occurrence of x in ∀x : F is called bound (by the ∀-quantifier).

Every occurrence of x in ∃x : F is called bound (by the ∃-quantifier).

An occurence of a variable is called free if it is not bound.

Example

converges(f ,a)∨a = 0 no bound vars., f ,a free
∀f : converges(f ,a)∧a = 0 f is bound, a is free

∀f : ∀a : converges(f ,a)↔ a = 0 f ,a are bound, no free vars.
∀f : converges(f ,a)→∃a : = (a,0) f bound, a free and bound.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 9/22

http://www.risc.jku.at

Syntax Analysis

I Constants, variables, function symbols, and predicate symbols should
be distinguishable.

I Function/Predicate symbols are often not specified explicitly but must
be recognized in mathematical expressions syntax analysis.

I Reveal the exact syntactical structure of an expression syntax tree.
I Determine, which variables are free/bound.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 10/22

http://www.risc.jku.at

Syntax Analysis

I Constant c: tree(c) = c
I Variable x : tree(x) = x

I Term f (t1, . . . , tn): tree(f (t1, . . . , tn)) =
f

tree(t1) . . . tree(tn)
�� HH�@

I Formula p(t1, . . . , tn): tree(p(t1, . . . , tn)) =

p

tree(t1) . . . tree(tn)
�

�
H
H�@

I Formula ¬F : tree(¬F) =
¬

tree(F)

I For ◦ ∈ {∧,∨,→,↔}: tree(F1 ◦F2) =
◦

tree(F1) tree(F2)
�
�

H
H

I For Q ∈ {∀,∃}: tree(Qx : F) =
Q

tree(x) tree(F)
�� HH

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 11/22

http://www.risc.jku.at

Syntax Analysis
∀f : ∃a : converges(f ,a)→ a = 0 can be meant as any of

1. ∀f : ∃a : (converges(f ,a)→ a = 0)
2. ∀f : (∃a : converges(f ,a))→ a = 0
3. (∀f : ∃a : converges(f ,a))→ a = 0

1. 2. 3.

constant variable function predicate connective quantifier
symbol symbol

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 12/22

http://www.risc.jku.at

Syntax Analysis

∀ε : ∃N : ∀n : (n > N → |f (n)−a|< ε)
I Quantifiers X
I Left and right of → must be formulas.
I n > N must be an atomic formula (infix

notation, predicate symbol “>” applied to
variables n and N.

I |f (n)−a|< ε: predicate symbol “<” applied
to |f (n)−a| and the variable ε.

I |f (n)−a|: function symbol “|.|” applied to
f (n)−a.

I f (n)−a: function symbol “−” applied to f (n)
and a.

I f (n): function symbol f applied to variable n.

/0

{ε}

{N,ε}

{n,N,ε}

{n,ε}{n,N}

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 13/22

http://www.risc.jku.at

Semantics

A predicate logic expression gets a meaning through a configuration, i.e.
the specification of

1. a non-empty domain,
2. an interpretation that gives

I for every constant an element of that domain,
I for every function symbol with arity n some concrete n-ary function on
the domain, and

I for every predicate symbol with arity n some concrete n-ary relation
on the domain, and

3. an assignment for the free variables in the expression.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 14/22

http://www.risc.jku.at

Semantics of Terms and Formulas
Meaning of a term is an object in the domain.

I Meaning of a variable assignment.
I Meaning of a constant interpretation.
I Meaning of f (t1, . . . , tn) apply the interpretation of f to the

meaning of the ti .

Meaning of a formula is true or false.

I Meaning of > is true, meaning of ⊥ is false.
I Meaning of t1 = t2 the meanings of t1 and t2 are identical.
I Meaning of p(t1, . . . , tn) apply the interpretation of p to the

meaning of the ti .
I Meaning of logical connectives apply truth tables to the meaning

of the constituent subformulas.
I Meaning of ∀x : F true iff the meaning of F is true for all possible

assignments for the free variable x .
I Meaning of ∃x : F true iff the meaning of F is true for at least one

assignment for the free variable x .
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 15/22

http://www.risc.jku.at

Semantics: Examples
∀n : R(n,n)

I Domain: natural numbers.
I R is interpreted as the divisibility relation on natural numbers.
I Every natural number is divisible by itself. true

∀n : R(n,n)

I Domain: real numbers.
I R is interpreted as the less-than relation on real numbers.
I Every real number is less than itself. false

∃x : R(a,x)∧R(x ,b)

I Domain: real numbers.
I R is interpreted as the less-than relation on real numbers.
I There is a real number x such that a < x and x < b. ???
I Assignment [a 7→ 5,b 7→ 6]: There is an assignment for x such that

5< x and x < 6. true, e.g. [x 7→ 5.5]
I Assignment [a 7→ 7,b 7→ 6]: There is an assignment for x such that

7< x and x < 6. false, why?
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 16/22

http://www.risc.jku.at

Nested Quantifiers
When quantifiers of different type are nested, the order matters.

Example

Domain: natural numbers.

∀x : ∃y : x < y true

(Why? For the assignment [x 7→ x̄] for x take [y 7→ x̄ +1] as the
assignment for y . The meaning of x < y is then x̄ < x̄ +1, which is true
no matter what x̄ is.)

∃y : ∀x : x < y false

(Why? Assume it was true, i.e. there is an assignment [y 7→ ȳ] for y such
that x < y is true for all assignments for x . But take [x 7→ ȳ] as the
assignment for x . The meaning of x < y is then ȳ < ȳ , which is false,
hence the original assumption must not be made, thus the meaning of the
formula must be false.)

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 17/22

http://www.risc.jku.at

Semantics Convention

Meaning of “=”, logical connectives, and quantifiers defined by the
above rules.

The meaning of all other symbols interpretation can be chosen as
desired and must be given explicitly.

In principle possible: express “a divides the sum of b and c” by

a ⊆ (b ∗ c)

using the interpretation

[⊆ 7→ the divisibility relation, ∗ 7→ the addition function].

Convention: interpretation is not given explicitly, a “standard
interpretation” is assumed.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 18/22

http://www.risc.jku.at

Semantics: Consequence and Equivalence
F is a (logical) consequence of Γ if
F is true in every configuration, in which all G ∈ Γ are true.

I F2 is a logical consequence of F1 means F2 is a consequence of {F1}.
I F2 “follows from” F1 regardless of the configuration. F1 “implies” F2.

F1 is (logically) equivalent to F2 (write “F1 ⇔ F2”) if
F1 is a consequence of F2 and F2 is a consequence of F1.

I F1 and F2 have the same meaning, regardless of the configuration.
I Every formula can always be substituted by an equivalent one.

F is valid if F is true in every configuration.

I F is a “fact”, F is a logical consequence of /0.
I F1 ⇔ F2 iff (F1↔ F2 is valid).
I F2 is a logical consequence of F1 iff (F1→ F2 is valid).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 19/22

http://www.risc.jku.at

Equivalent Formulas

In addition to equivalences for connectives (see propositional logic):

¬(∀x : F) ⇔ ∃x : ¬F (De-Morgan)
¬(∃x : F) ⇔ ∀x : ¬F (De-Morgan)
∀x : (F1∧F2) ⇔ (∀x : F1)∧ (∀x : F2)
∃x : (F1∨F2) ⇔ (∃x : F1)∨ (∃x : F2)
∀x : (F1∨F2) ⇔ F1∨ (∀x : F2), if x does not occur free in F1
∃x : (F1∧F2) ⇔ F1∧ (∃x : F2), if x does not occur free in F1

For a finite domain {v1, . . . ,vn}:

∀x : F ⇔ F [v1/x]∧ . . .∧F [vn/x]
∃x : F ⇔ F [v1/x]∨ . . .∨F [vn/x]

E [t/x]: the expression E with every free occurrence of x substituted by
the term t. (E has the same meaning for x as E [t/x] has for t.)

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 20/22

http://www.risc.jku.at

Language Extensions

1. Locally bound variables: let x = t in E
I E can be a term or a formula, let . . . in . . . is term or a formula,
respectively.

I Binds the variable x .
I Meaning: E [t/x].
I Alternative notation: E where x = t or E |x=t .
I If F is a formula, then

let x = t in F ⇔ ∃x : x = t ∧F .

2. Conditional: if C then E1 else E2
I Ei can be both terms or both formulas, if C then E1 else E2 is term
or a formula, respectively.

I Meaning: if C means true, then the meaning of E1, otherwise the
meaning of E2.

I If E1 and E2 are formulas, then

if C then E1 else E2 ⇔ (C → E1)∧ (¬C → E2).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 21/22

http://www.risc.jku.at

Further Quantifiers

Common mathematical language uses more quantifiers:

I
h
∑
i=l

t: binds i . Meaning: t[l/i] + · · ·+ t[h/i].

I
h
∏
i=l

t: binds i . Meaning: t[l/i] · · · t[h/i].

I {x ∈ A | P}: binds x . Meaning: The set of all x in A such that P is
true.

I {t | x ∈ A∧P}: binds x . Meaning: The set of all t when x is in A
and P is true.

I lim
x→v

t: binds x . Meaning: The limit of t when x goes to v .
I max

x∈A
t: binds x . Meaning: The maximum of t when x runs through A.

I min
x∈A

t: binds x . Meaning: The minimum of t when x runs through A.
I . . .

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 22/22

http://www.risc.jku.at

