VL LOGIK SAT: EVALUATING FORMULAS

WS 2016/2017 (342.208)

Armin Biere, FMV (biere@jku.at)
Martina Seidl, FMV (martina.seidl@jku.at)

Version 2016.1
Institute for Formal Models and Verification
Johannes Kepler University Linz

Satisfiability Checking

Definition (Satisfiability Problem of Propositional Logic (SAT))

Given a formula ϕ , is there an assignment ν such that $[\phi]_{\nu} = 1$?

- oldest **NP**-complete problem (see next slides)
 - ☐ checking a solution (assignment satisfies formula) is easy (polynomial effort)
 - ☐ finding a solution is difficult (probably exponential in the worst case, what is easy compared to satisfiability checking in other logics)
- many practical applications (used in industry)
- efficient SAT solvers (solving tools) are available
- other problems can be translated to SAT:

problem	formulation in propositional logic
ϕ is valid	$ eg\phi$ is unsatisfiable
ϕ is refutable	to $\neg \phi$ is satisfiable
$\phi \Leftrightarrow \psi$	to $\neg(\phi \leftrightarrow \psi)$ is unsatisfiable
$\phi_1,\ldots,\phi_n\models\psi$	$\phi_1 \wedge \ldots \wedge \phi_n \wedge \neg \psi$ is unsatisfiable

A Glimpse of Complexity Theory

- characterization of computational *hardness* of a problem
- *Turing Machine*: machine model for abstract "run time" or "memory usage"
- allows more abstract versions of "run time", "memory usage"
- the focus is on worst-case *asymptotic* time and space usage

Definition

problem is in $\mathcal{O}(f(n))$ iff exists constant c and an algorithm which needs $c\cdot f(n)$ steps (in the worst case on a Turing machine) for an input of size n

- \blacksquare logarithmic $\mathcal{O}(\log n)$, e.g. binary search on sorted array of size n
- linear $\mathcal{O}(n)$, e.g. linear search in list with n elements
- \blacksquare quadratic $\mathcal{O}(n^2)$, e.g. generate list of pairs of n elements
- \blacksquare exponential $\mathcal{O}(2^n)$, e.g. produce all subsets of a set of n elements

Definition

polynomial problems: exists fixed k such that worst-case run time is in $\mathcal{O}(n^k)$; the class of polynomial problems is called \mathbf{P}

SAT and the Complexity Class NP

Definition

A decision problem asks whether an input belongs to a certain class.

Prime: decide whether a number given as input is prime.

SAT: decide whether formula given as input is satisfiable.

Basic idea of NP is to use a "guess" and "check" approach,

where "guessing" is non-deterministic, e.g. just a "good" choice has to exist.

Definition

The class NP contains all decision problems which can be decided by a "guessing" and "checking" algorithm in polynomial time in the input size.

Clearly both Prime and SAT belong to NP.

Theorem (Cook'71)

Any decision problem in NP can be reduced (encoded) polynomially into SAT.

Complexity Hierarchy

P polynomial time

NP non-deterministic polynomial time

PSPACE polynomial space

EXP exponential time

NEXP non-deterministic exponential time

Simple Algorithm for Satisfiability Checking

```
1 Algorithm: evaluate
    Data: formula φ
    Result: 1 iff \phi is satisfiable
 2 if \phi contains a variable x then
         pick v \in \{\top, \bot\}
 3
         /* replace x by truth constant v, evaluate resulting formula */
 4
         if evaluate(\phi[x|v]) then return 1:
 5
         else return evaluate(\phi[x|\overline{v}]):
 6
 7 else
         switch \phi do
 8
               case ⊤ do return 1:
 9
               case \( \precede \) do return 0:
10
               case \neg \psi do return ! evaluate(\psi) /* true iff \psi is false */:
11
               case \psi' \wedge \psi'' do
12
                     return evaluate(\psi') && evaluate(\psi'') /* true iff both \psi' and \psi'' are true */
13
               case \psi' \vee \psi'' do
14
                     return evaluate(\psi') || evaluate(\psi'') | * true iff \psi' or \psi'' is true */
15
```

Reasoning with (Propositional) Calculi

goal: automatically reason about (propositional) formulas, i.e., mechanically show validity/unsatisfiability	
basic idea: use syntactical manipulations to prove/refute a formula	
elements of a calculus:	
 □ axioms: trivial truths/trivial contradictions □ rules: inference of new formulas 	
approach: construct a proof/refutation, i.e., apply the rules of the calculus until only axioms are inferred. If this is not possible, then the formula is not valid/unsatisfiable.	
examples of calculi:	
□ sequence calculus: shows validity□ resolution calculus: shows unsatisfiability	

Sequent Calculus: Sequents

Definition

A sequent is an expression of the form

$$\phi_1,\ldots,\phi_n\vdash\psi$$

where $\phi_1, \ldots, \phi_n, \psi$ are propositional formulas.

The formulas ϕ_1, \ldots, ϕ_n are called *assumptions*, ψ is called *goal*.

remarks:

- lacktriangleq intuitively $\phi_1,\ldots,\phi_n\vdash\psi$ means goal ψ follows from $\{\phi_1,\ldots,\phi_n\}$
- \blacksquare special case n=0:
 - \square written as $\vdash \psi$
 - \square meaning: we have to prove that ψ is valid
- \blacksquare notation: for sequent $\phi_1, \ldots, \phi_n \vdash \psi$, we write $K \ldots \phi_i \vdash \psi$ if we are only interested in assumption ϕ_i
- the assumptions are *orderless* not ordered

Sequent Calculus: Axiom and Structural Rules

axiom "goal in assumption":
If the goal is among the assumptions, the goal can be proved.

GoalAssum
$$K\ldots,\psi \vdash \psi$$

axiom "contradiction in assumptions":
 If the assumptions are contradicting, anything can be proved.

$$\frac{}{K\ldots,\phi,\neg\phi\;\vdash\;\psi}$$

■ rule "add valid assumption":

$$\frac{K\ldots,\phi \, \vdash \, \psi}{K\ldots \, \vdash \, \psi} \text{ if } \phi \text{ is valid}$$

Sequent Calculus: Negation Rules

■ rules "contradiction":

$$\mathsf{A}\text{--}\frac{K\ldots\neg\psi\;\vdash\;\bot}{K\ldots\;\vdash\;\psi}$$

$$P - \neg \frac{K \dots \vdash \neg \phi}{K \dots, \phi \vdash \bot}$$

■ rules "elimination of double negation":

$$\stackrel{\mathsf{P}\neg\neg_d}{\underline{K}\ldots\,\vdash\,\neg\neg\psi}$$

$$^{\mathsf{A} \cdot \neg_d} \frac{K \dots, \phi \vdash \psi}{K \dots, \neg \neg \phi \vdash \psi}$$

Sequent Calculus: Binary Connective Rules

■ rules "conjunction":

$$\stackrel{\mathsf{A}_{\wedge} \wedge}{\underline{K \dots, \phi_1, \phi_2 \vdash \psi}}$$

$$\frac{K \ldots \vdash \psi_1 \qquad K \ldots \vdash \psi_2}{K \ldots \vdash \psi_1 \land \psi_2}$$

■ rules "disjunction":

$$\xrightarrow{F_{-\vee}} \frac{K \dots, \neg \psi_1 \vdash \psi_2}{K \dots \vdash \psi_1 \vee \psi_2}$$

$$\xrightarrow{K \dots, \phi_1 \vdash \psi \qquad K \dots, \phi_2 \vdash \psi} \frac{K \dots, \phi_2 \vdash \psi}{K \dots, \phi_1 \lor \phi_2 \vdash \psi}$$

Rules for other connectives like implication " \rightarrow " and equivalence " \leftrightarrow " are constructed accordingly.

Some Remarks on Sequent Calculus

- premises of a rule: sequent(s) above the line
- conclusion of a rule: sequent below the line
- axiom: rule without premises
- non-deterministic rule: P-∨
- further non-determinism: decision which rule to apply next
- rules with case split: P-∧, A-∨
- \blacksquare proof of formula ψ
 - 1. start with $\vdash \psi$
 - apply rules from bottom to top as long as possible, i.e., for given conclusion, find suitable premise(s)
 - 3. if finally all sequents are axioms then ψ is valid
- note: there are many variants of the sequent calculus

Computing with Sequent Calculus

1 Algorithm: entails

```
Data: set of assumptions A, formula \psi
     Result: 1 iff \mathcal{A} entails \psi, i.e., \mathcal{A} \models \psi
 2 if \psi = \neg \neg \psi' then return entails (\mathcal{A}, \psi'):
 3 if \neg \neg \phi \in \mathcal{A} then return entails (\mathcal{A} \setminus \{\neg \neg \phi\} \cup \{\phi\}, \psi);
 4 if \phi_1 \wedge \phi_2 \in \mathcal{A} then return entails (\mathcal{A} \setminus \{\phi_1 \wedge \phi_2\} \cup \{\phi_1, \phi_2\}, \psi):
 5 if (\psi \in A) or (\phi, \neg \phi \in A) then return 1:
 6 if A \cup \{\psi\} contains only literals then return 0:
 7 switch \(\psi\) do
            case | do
 8
                     if \neg \phi \in \mathcal{A} then return entails (\mathcal{A} \setminus \{\neg \phi\}, \phi):
 9
                    if \phi_1 \vee \phi_2 \in \mathcal{A} then
10
                            if ! entails (A \setminus \{\neg \phi_1 \lor \phi_2\} \cup \{\phi_1\}, \bot) then return 0;
11
                            else return entails (A \setminus \{\neg \phi_1 \lor \phi_2\} \cup \{\phi_2\}, \bot);
12
13
             case x where x is a variable do return entails (A \cup \{\neg x\}, \bot);
             case \neg \psi' do return entails (\mathcal{A} \cup \{\psi'\}, \bot);
14
             case \psi_1 \vee \psi_2 do return entails (A \cup \{\neg \psi_1\}, \psi_2);
15
             case \psi_1 \wedge \psi_2 do return entails (A, \psi_1) && entails (A, \psi_2):
16
```

Proving XOR stronger than OR

proof direction

Refuting XOR stronger than AND

GASS
$$\frac{a, (\neg a \lor \neg b) \vdash a}{A, (\neg a \lor \neg b) \vdash a} \xrightarrow{A, (\neg a \lor \neg b) \vdash a} \xrightarrow{b, \neg a \vdash a} \xrightarrow{b, \neg a \vdash a} \vdots \vdots \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a} \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{A, \neg a} \xrightarrow{A, \neg a} \xrightarrow{A, \neg a \lor \neg b, (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{(a \lor b), (\neg a \lor \neg b) \vdash a \land b} \xrightarrow{(a \lor b), (\neg a \lor \neg b)$$

counter example to validty: $a = \bot$, $b = \top$

Soundness and Completeness

For any calculus important properties are, *soundness*, i.e. the question "Can only valid formulas be shown as valid?" and *completeness*, i.e. the question "Is there a proof for every valid formula?".

Soundness

If a formula is shown to be valid in the Gentzen Calculus, then it is valid.

Proof sketch:

Consider each rule individually and show that from valid premises only valid conclusions can be drawn.

Completeness

Every valid formula can be proven to be valid in the Gentzen Calculus.

Proof sketch:

Show algorithm terminates and that there is at least one case where it returns false if the formula is not valid.

Proving Formulas in Normal Form

ı	In practice, formulas of arbitrary structure are quite challenging to handle	
	□ tree structure	
	☐ simplifications affect only subtrees	
ı	We have seen that CNF and DNF are able to represent every formula	
	$\ \square$ so why not use them as input for SAT?	
ı	Conjunctive Normal Form	
	□ refutability is easy to show	
	□ CNF can be efficiently calculated (polynomial)	
ı	Disjunctive Normal Form	
	□ satisfiability is easy to show	
	□ complexity is in getting the DNF	
ı	CNF and DNF can be obtained from the truth tables	
	$\ \square$ exponential many assignments have to be considered	
ı	alternative approach	
	$\ \square$ structural rewritings are (satisfiability) equivalence preserving	

Transformation to Normal Form

1. Remove \leftrightarrow , \rightarrow , \oplus as follows:

$$\phi \leftrightarrow \psi \Leftrightarrow (\phi \to \psi) \land (\psi \to \phi), \phi \to \psi \Leftrightarrow \neg \phi \lor \psi,$$

$$\phi \oplus \psi \Leftrightarrow (\phi \lor \psi) \land (\neg \phi \lor \neg \psi)$$

- Transform formula to negation normal form (NNF) by application of laws of De Morgan and elimination of double negation
- 3. Transform formula to CNF (DNF) by laws of distributivity

Example

Transform $\neg(a \leftrightarrow b) \rightarrow (\neg(c \land d) \land e)$ to an equivalent formula in CNF.

- 1. a) remove equivalences: $\Leftrightarrow \neg((a \to b) \land (b \to a)) \to (\neg(c \land d) \land e)$
 - b) remove implications: $\Leftrightarrow \neg \neg ((\neg a \lor b) \land (\neg b \lor a)) \lor (\neg (c \land d) \land e)$
- 2. NNF: $\Leftrightarrow ((\neg a \lor b) \land (\neg b \lor a)) \lor ((\neg c \lor \neg d) \land e)$
- 3. $\Leftrightarrow ((\neg a \lor b) \lor ((\neg c \lor \neg d) \land e))) \land ((\neg b \lor a) \lor ((\neg c \lor \neg d) \land e)))$ $\Leftrightarrow (\neg a \lor b \lor \neg c \lor \neg d) \land (\neg a \lor b \lor e) \land (\neg b \lor a \lor \neg c \lor \neg d) \land (\neg b \lor a \lor e)$

Some Remarks on Normal Forms

- The presented transformation to CNF/DNF is exponential in the worst case (e.g., transform $(a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee \cdots \vee (a_n \wedge b_n)$ to CNF).
- For DNF transformation, there is probably no better algorithm.
- For CNF transformation, there are polynomial algorithms.
 - □ Basic idea: introduce labels for subformulas.
 - ☐ Also works for formulas with sharing (circuits).
 - □ Also known as "Tseitin Encoding".
- CNF is usually not easier to solve, but easier to handle:
 - □ compact data structures: a CNF is simply a list of lists of literals.
- CNF very popular in practice: standard input format DIMACS
- To solve satisfiability of CNF, there are many optimization techniques and dedicated algorithms.

Resolution

■ the resolution calculus consists of the single resolution rule

$$\frac{x \vee C \qquad \neg x \vee D}{C \vee D}$$

- \square C and D are (possibly empty) clauses
- $\hfill\Box$ the clause $C\vee D$ is called resolvent
- \square variable x is called *pivot*
- $\ \square$ usually antecedent clauses $x \lor C$ and $\neg x \lor D$ are assumed not to be tautological, i.e., $x \not\in C$ and $x \not\in D$.
- in other words:

$$(\neg x \to C), (x \to D) \models C \lor D$$

- resolution is *sound* and *complete*.
- the resolution calculus works only on formulas in CNF
- if the empty clause can be derived then the formula is *unsatisfiable*
- if no new clause can be generated by application of the resolution rule then the formula is satisfiable

Example

one application of resolution

$$\frac{x \vee y \vee \neg z \qquad \neg x \vee y' \vee \neg z}{y \vee \neg z \vee y'}$$

derivation of empty clause:

$$y - y$$

derivation of tautology:

$$\begin{array}{c|cccc} x \lor a & \neg x \lor \neg a \\ \hline & a \lor \neg a \end{array}$$

Resolution Example

We prove unsatisfiability of

$$\{(\neg x_1 \lor \neg x_5), (x_4 \lor x_5), (x_2 \lor \neg x_4), (x_3 \lor \neg x_4), (\neg x_2 \lor \neg x_3), (x_1 \lor x_4 \lor \neg x_6), (x_6)\}$$

as follows:

DPLL Overview

The DPLL algorithm is ...

- old (invented 1962)
- easy (basic pseudo-code is less than 10 lines)
- popular (well investigated; also theoretical properties)
- usually realized for formulas in CNF
- using binary constraint propagation (BCP)
- in its modern form as conflict drive clause learning (CDCL) basis for state-of-the-art SAT solvers

Binary Constraint Propagation

Definition (Binary Constraint Propagation (BCP))

Let ϕ be a formula in CNF containing a unit clause C, i.e., ϕ has a clause C=(l) which consists only of literal l. Then $BCP(\phi,l)$ is obtained from ϕ by

- \blacksquare removing all clauses with l
- lacktriangle removing all occurrences of \bar{l}

- BCP on variable *x* can trigger application of BCP on variable *y*
- if BCP produces the empty clause, then the formula is unsatisfiable
- if BCP produces the empty CNF, then the formula is satisfiable

Example

$$\phi \ = \ \{ (\neg a \ \lor \ b \ \lor \ \neg c), (a \ \lor \ b), (\neg a \ \lor \ \neg b), (a) \}$$

1.
$$\phi' = BCP(\phi, a) = \{(b \lor \neg c), (\neg b)\}\$$

2.
$$\phi'' = BCP(\phi', \neg b) = \{(\neg c)\}\$$

3.
$$\phi'' = BCP(\phi', c) = \{\} = \top$$

DPLL Algorithm

```
1 Algorithm: evaluate
    Data: formula \phi in CNF
    Result: 1 iff \phi satisfiable
 2 while 1 do
          \phi = BCP(\phi)
          if \phi == \top then return 1;
          if \phi == \bot then
 5
                if stack.isEmpty() then return 0;
                (l, \phi) = \text{stack.pop}()
 7
                \phi = \phi \wedge l
 8
          else
 9
10
                select literal l occurring in \phi
                stack.push(\bar{l}, \phi)
11
                \phi = \phi \wedge l
12
```

Some Remarks on DPLL

DPLL is the basis f	or most state-of-the-art SAI solvers
like Lingelin	<pre>g http://fmv.jku.at/lingeling</pre>
□ simpler or n	nore established solvers: MiniSAT, PicoSAT, Cleaneling, \dots
■ DPLL alone is not	enough - powerful optimizations required for efficiency:
□ learning and	d non-chronological back-tracking (CDCL)
☐ reset strate	gies and phase-saving
compact laz	y data-structures
variable sele	ection heuristics
\square usually com	bined with preprocessing before search
and inproce	ssing algorithms interleaved with search
variants of DPLL a	re also used for other logics:
□ quantified p	ropositional logic (QBF)
□ satisfiability	modulo theories (SMT)
challenge to paralle	elize
□ some succe	essful attempts:
ManySA	T, Plingeling, Penelope, Treengeling,