VL LOGIK: PROPOSITIONAL LOGIC

WS 2016/2017 (342.208)

Armin Biere, FMV (biere@jku.at) Martina Seidl, FMV (martina.seidl@jku.at) Version 2016.3

Propositions

A proposition is an atomic statement that is either true or false.

Example:	
Alice comes to the party.	
■ It rains.	

With connectives, propositions can be combined.

Example:

■ Alice comes to the party, Bob as well, but not Cecile.

■ If it rains, the street is wet.

Propositional Logic

- *two truth values (Boolean domain)*: true/false, verum/falsum, on/off, **1/0**
- Ianguage elements
 - □ atomic propositions (atoms, variables)
 - no internal structure
 - · either true or false

 \Box logic connectives: not (¬), and (\land), or (\lor), ...

- · operators for construction of composite propositions
- · concise meaning
- · argument(s) and return value from Boolean domain

parenthesis

Example: formula of propositional logic: $(\neg t \lor s) \land (t \lor s) \land (\neg t \lor \neg s)$

atoms: **t**, **s**, connectives: \neg , \lor , \land , parenthesis for structuring the expression

Background

- historical origins: ancient Greeks
- in philosophy, mathematics, and computer science
- two very basic principles:
 - □ Law of Excluded Middle:
 - A proposition is true or its negation is true.
 - □ Law of Contradiction:
 - No expression is both true and false at the same time.
- very simple language
 - no objects, no arguments to propositions
 - □ no functions, no quantifiers
- solving is easy (relative to other logics)
- many applications in industry

J⊻U

Syntax of Propositional Logic (1/2)

The set $\ensuremath{\mathcal{L}}$ of well-formed propositional formulas is the smallest set such that

1. $\top, \bot \in \mathcal{L};$

- 2. $\mathcal{P} \subseteq \mathcal{L}$ where \mathcal{P} is the set of atomic propositions (atoms, variables);
- 3. if $\phi \in \mathcal{L}$ then $(\neg \phi) \in \mathcal{L}$;
- 4. if $\phi, \psi \in \mathcal{L}$ then $(\phi \circ \psi) \in \mathcal{L}$ with $\circ \in \{\lor, \land, \leftrightarrow, \rightarrow\}$.

 \mathcal{L} is the language of propositional logic. The elements of \mathcal{L} are propositional formulas.

Syntax of Propositional Logic (2/2)

In *Backus-Naur form (BNF)* propositional formulas are described as follows:

$$\phi ::= \top \mid \perp \mid p \mid (\neg \phi) \mid (\phi \lor \phi) \mid (\phi \land \phi) \mid (\phi \leftrightarrow \phi) \mid (\phi \to \phi)$$

Rules of Precedence

To reduce the number of parenthesis, we use the following conventions (**in case of doubt, uses parenthesis!**):

- \blacksquare \neg is stronger than \land
- \land is stronger than \lor
- \lor is stronger than \rightarrow
- $\blacksquare \rightarrow \text{is stronger than} \leftrightarrow$
- Binary operators of same strength are assumed to be left parenthesized (also called "left associative")

Example:

- $\blacksquare \ \neg a \wedge b \vee c \to d \leftrightarrow f \text{ is the same as } (((((\neg a) \wedge b) \vee c) \to d) \leftrightarrow f).$
- $\blacksquare \ a' \lor a'' \lor a'' \land b' \lor b'' \text{ is the same as } (((a' \lor a'') \lor (a'' \land b')) \lor b'').$
- $\blacksquare \ a' \wedge a'' \wedge a'' \vee b' \wedge b'' \text{ is the same as } (((a' \wedge a'') \wedge a''') \vee (b' \wedge b'')).$

J⊼∩

Formula Tree

■ formulas have a tree structure

- □ inner nodes: connectives
- □ *leaves*: truth constants, variables
- default: inner nodes have <u>one</u> child node (negation) or <u>two</u> nodes as children (other connectives).
- tree structure reflects the use of parenthesis
- simplification:

 $\underline{\text{disjunction}}$ and $\underline{\text{conjunction}}$ may be considered as *n*-ary operators,

i.e., if a node N and its child node C are of the same kind of connective (conjunction / disjunction), then the children of C can become direct children of N and the C is removed.

J⊻U

Formula Tree: Example (1/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (\bot \lor a \lor b)))$$

has the formula tree

Formula Tree: Example (2/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (\bot \lor a \lor b)))$$

has the simplified formula tree

Subformulas

An *immediate subformula* is defined as follows:

- truth constants and atoms have no immediate subformula.
- only immediate subformula of $\neg \phi$ is ϕ .
- formula φ ∘ ψ (∘ ∈ {∧, ∨, ↔, →}) has immediate subformulas φ and ψ.

Informal: a subformula is a formula that is part of a formula

The set of subformulas of a formula ϕ is the smallest set S with

1. $\phi \in S$

2. if $\psi \in S$ then all immediate subformulas of ψ are in S

The subformulas of $(a \lor b) \to (c \land \neg \neg d)$ are

 $\{a,b,c,d,\neg d,\neg\neg d,a\lor b,c\land\neg\neg d,(a\lor b)\to(c\land\neg\neg d)\}$

Limboole

SAT-solver

available at http://fmv.jku.at/limboole/

input format in BNF:

 $\begin{array}{l} \langle expr \rangle :::= \langle iff \rangle \\ \langle iff \rangle :::= \langle implies \rangle \mid \langle implies \rangle "<->" \langle implies \rangle \\ \langle implies \rangle :::= \langle or \rangle \mid \langle or \rangle "->" \langle or \rangle \mid \langle or \rangle "<-" \langle or \rangle \\ \langle or \rangle :::= \langle and \rangle \mid \langle and \rangle "|" \langle and \rangle \\ \langle and \rangle :::= \langle not \rangle \mid \langle not \rangle "\&" \langle not \rangle \\ \langle not \rangle :::= \langle basic \rangle \mid "!" \langle not \rangle \\ \langle basic \rangle :::= \langle var \rangle \mid "(" \langle expr \rangle ")" \end{array}$

where 'var' is a string over letters, digits, and - . [] \$ @

In Limboole the formula $(a \lor b) \to (c \land \neg \neg d)$ is represented as $J \succeq U \qquad ((a \mid b) \rightarrow (c \And !!d)) \qquad 11/48$

Special Formula Structures

literal: variable or a negated variable (also (negated) truth constants)

 \Box examples of literals: $x, \neg x, y, \neg y$

 \Box If *l* is a literal with l = x or $l = \neg x$ then var(l) = x.

 \Box For literals we use letter l, k (possibly indexed or primed).

 \Box In principle, we identify $\neg \neg l$ with *l*.

■ *clause*: disjunction of literals

 \Box unary clause (clause of size one): *l* where *l* is a literal

 \Box empty clause (clause of size zero): \bot

 \Box examples of clauses: $(x \lor y)$, $(\neg x \lor x' \lor \neg x'')$, x, $\neg y$

cube: conjunction of literals

 \Box unary cube (cubes of size one): *l* where *l* is a literal

 \Box empty cubes (cubes of size zero): op

 \Box examples of cubes: $(x \land y)$, $(\neg x \land x' \land \neg x''), x, \neg y$

J⊻U

Negation Normal Form (1/2)

In other words: A formula in NNF contains only conjunctions, disjunctions, and negations and negations only occur in front of variables and constants.

Negation Normal Form (2/2)

If a formula is in negation normal form then

- in the formula tree, nodes with negation symbols only occur directly before leaves.
- there are no subformulas of the form ¬φ where φ is something else than a variable or a constant.
- it does not contain NAND, NOR, XOR, equivalence, and implication connectives.

Example: The formula $((x \lor \neg x_1) \land (x \lor (\neg z \lor \neg x_1)))$ is in NNF but $\neg((x \lor \neg x_1) \land (x \lor (\neg z \lor \neg x_1)))$ is not in NNF.

Conjunctive Normal Form (CNF)

A propositional formula is in *conjunctive normal form* (CNF) iff it is a conjunction of clauses.

A formula in conjunctive normal form is

- in negation normal form
- \blacksquare \top if it contains no clauses
- easy to check whether it can be refuted

remark: CNF is the input of most SAT-solvers (DIMACS format)

Disjunctive Normal Form (DNF)

A propositional formula is in *disjunctive normal form* (*DNF*) if it is a disjunction of cubes.

A formula in disjunctive normal form is

- in negation normal form
- $\blacksquare \perp$ if it contains no cubes
- easy to check whether it can be satisfied

Examples for CNF and DNF

Examples CNF

Examples DNF

 $\begin{array}{cccc} \blacksquare & \top & \blacksquare & l_1 \land l_2 \land l_3 \\ \blacksquare & \bot & \blacksquare & l_1 \lor l_2 \lor l_3 \\ \blacksquare & a & \blacksquare & (a_1 \land \neg a_2) \lor (a_1 \land b_2 \land a_2) \lor a_2 \\ \blacksquare & \neg a & \blacksquare & ((l_{11} \land \ldots \land l_{1m_1}) \lor \ldots \lor (l_{n1} \land \ldots \land l_{nm_n})) \end{array}$

Conventions

we use the following conventions unless stated otherwise:

- \blacksquare *a*, *b*, *c*, *x*, *y*, *z* denote variables and *l*, *k* denote literals
- $\bullet, \psi, \gamma \text{ denote arbitrary formulas}$
- C, D denote clauses or cubes (clear from context)
- *clauses* are also written as sets
 - $\Box (l_1 \vee \ldots \vee l_n) = \{l_1, \ldots l_n\}$
 - \Box to add a literal *l* to clause *C*, we write $C \cup \{l\}$
 - \Box to remove a literal *l* from clause *C*, we write $C \setminus \{l\}$
- formulas in CNF are also written as sets of sets
 - $\Box ((l_{11} \lor \ldots \lor l_{1m_1}) \land \ldots \land (l_{n1} \lor \ldots \lor l_{nm_n})) = \{\{l_{11}, \ldots l_{1m_1}\}, \ldots, \{l_{n1}, \ldots l_{nm_n}\}\}$
 - \Box to add a clause C to CNF ϕ , we write $\phi \cup \{C\}$
 - \Box to remove a clause C from CNF ϕ , we write $\phi \setminus \{C\}$

J⊻U

Negation

- unary connective ¬ (operator with exactly one argument)
- negating the truth value of its argument
- **alternative notation:** $!\phi, \overline{\phi}, -\phi, NOT\phi$

Example:

- If the atom "It rains." is true then the negation "It does not rain." is false.
- If atom a is true then $\neg a$ is false.
- $\blacksquare \ \ \text{If formula} \ ((a \lor x) \land y) \text{ is true then formula} \ \neg((a \lor x) \land y) \text{ is false}.$
- $\blacksquare \quad \text{If formula } ((b \to y) \land z) \text{ is true then formula } \neg ((b \to y) \land z) \text{ is false.}$

J⊼∩

Conjunction

- a conjunction is true iff both arguments are true
- alternative notation for $\phi \land \psi$: $\phi \& \psi$, $\phi \psi$, $\phi * \psi$, $\phi \cdot \psi$, $\phi AND\psi$ ■ For $(\phi_1 \land \ldots \land \phi_n)$ we also write $\bigwedge_{i=1}^n \phi_i$.

Example:

- $\blacksquare (a \land \neg a) \text{ is always false.}$
- $\blacksquare (\top \land a) \text{ is true if } a \text{ is true. } (\bot \land \phi) \text{ is always false.}$
- If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.

Disjunction

a disjunction is true iff at least one of the arguments is true
 alternative notation for φ ∨ ψ: φ|ψ, φ + ψ, φORψ

For $(\phi_1 \lor \ldots \lor \phi_n)$ we also write $\bigvee_{i=1}^n \phi_i$.

Example:

- $(a \lor \neg a)$ is always true.
- $\blacksquare (\top \lor a) \text{ is always true. } (\bot \lor a) \text{ is true if } a \text{ is true.}$
- $\blacksquare \ \ \text{If} \ (a \to b) \text{ is true and } (\neg c \to d) \text{ then } (a \to b) \lor (\neg c \to d) \text{ is true}.$

Implication

 an implication is true iff the first argument is false or both arguments are true (Ex falsum quodlibet.)

■ alternative notation: $\phi \supset \psi, \phi$ IMPL ψ

Example:

- If atom "It rains." is true and atom "The street is wet." is true then the statement "If it rains, the street is wet." is true.
- $\blacksquare (\bot \to a) \text{ and } (a \to a) \text{ are always true. } \top \to \phi \text{ is true if } \phi \text{ is true.}$

J⊻U

Equivalence

■ true iff both subformulas have the same value ■ alternative notation: $\phi = \psi, \phi \equiv \psi, \phi \sim \psi$

Example:

- $\blacksquare \quad \text{The formula } a \leftrightarrow a \text{ is always true.}$
- The formula $a \leftrightarrow b$ is true iff a is true and b is true or a is false and b is false.
 - $\top \leftrightarrow \bot$ is never true.

J⊼∩

The Logic Connectives at a Glance

ϕ	ψ	Т	\perp	$\neg \phi$	$\phi \wedge \psi$	$\phi \lor \psi$	$\phi \to \psi$	$\phi \leftrightarrow \psi$	$\phi\oplus\psi$	$\phi\uparrow\psi$	$\phi\downarrow\psi$
0	0	1	0	1	0	0	1	1	0	1	1
0	1	1	0	1	0	1	1	0	1	1	0
1	0	1	0	0	0	1	0	0	1	1	0
1	1	1	0	0	1	1	1	1	0	0	0

	Example:									
	ϕ	ψ	$\neg(\neg\phi\wedge\neg\psi)$	$\neg\phi\lor\psi$	$(\phi \to \psi) \land (\psi \to \phi)$					
	0	0	0	1	1					
	0	1	1	1	0					
	1	0	1	0	0					
	1	1	1	1	1					
l			I							

Observation: connectives can be expressed by other connectives.

Other Connectives

there are 16 different functions for binary connectives

- \blacksquare so far, we had $\land,\lor,\leftrightarrow,\rightarrow$
- further connectives:

 $\Box \phi \not\leftrightarrow \psi$ (also \oplus , *xor*, antivalence)

 $\Box \phi \uparrow \psi$ (*nand*, Sheffer Stroke Function)

 $\Box \phi \downarrow \psi$ (nor, Pierce Function)

ϕ	ψ	$\phi\not\leftrightarrow\psi$	$\phi\uparrow\psi$	$\phi\downarrow\psi$
0	0	0	1	1
0	1	1	1	0
1	0	1	1	0
1	1	0	0	0

- nor and nand can express every other boolean function (i.e., they are functional complete)
- often used for building digital circuits (like processors)

J⊼∩

Propositional Formulas and Digital Circuits

Example of a Digital Circuit: Half Adder

and

 $s \Leftrightarrow x \oplus y.$

Different Notations

			Verilog		
operator	logic	circuits	C/C++/Java/C#	VHDL	Limboole
1	Т	1	true	1	_
0	1	0	false	0	_
negation	$\neg \phi$	$ar{\phi} - \phi$	$!\phi$	$not \ \phi$	$!\phi$
conjunction	$\phi \wedge \psi$	$\phi\psi^{}\phi\cdot\psi^{}$	$\phi \&\& \psi$	$\phi \; and \; \psi$	ϕ & ψ
disjunction	$\phi \lor \psi$	$\phi + \psi$	$\phi \mid\mid \psi$	$\phi \ or \ \psi$	$\phi \mid \psi$
exclusive or	$\phi \not\leftrightarrow \psi$	$\phi \oplus \psi$	$\phi \mathrel{!=} \psi$	$\phi \ xor \ \psi$	_
implication	$\phi \to \psi$	$\phi \supset \psi$	_	_	$\phi \rightarrow \psi$
equivalence	$\phi \leftrightarrow \psi$	$\phi=\psi$	$\phi ~==~ \psi$	$\phi \; xnor \; \psi$	$\phi < -> \psi$

Example:

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (c \lor a \lor b)))$$

$$(a + (b + \overline{c})) = c ((a \supset -b) + (0 + a + b))$$

$$(a \parallel (b \parallel !c)) = (c \&\& ((! a \parallel ! b) \parallel (false \parallel a \parallel b)))$$
28/48

All 16 Binary Functions

ϕ	ψ	constant 0	nor					xor	nand	and	equivalence		implication			or	constant 1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Assignment

- a variable can be assigned one of two values from the two-valued domain B, where B = {1,0}
- the mapping $\nu : \mathcal{P} \to \mathbb{B}$ is called *assignment*, where \mathcal{P} is the set of atomic propositions

• we sometimes write an assignment ν as set V with $V \subseteq \mathcal{P} \cup \{\neg x | x \in \mathcal{P}\}$ such that $\Box x \in V \text{ iff } \nu(x) = \mathbf{1}$ $\Box \neg x \in V \text{ iff } \nu(x) = \mathbf{0}$

- for *n* variables, there are 2^n assignments possible
- an assignment corresponds to one line in the truth table

J⊻U

Assignment: Example

x	y	z	$(x \lor y) \land \neg z$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- one assignment: $\nu(x) = \mathbf{1}, \nu(y) = \mathbf{0}, \nu(z) = \mathbf{1}$
- **alternative notation:** $V = \{x, \neg y, z\}$

observation: A variable assignment determines the truth value of the formulas containing these variables.
 31/48

Semantics of Propositional Logic

Given assignment $\nu : \mathcal{P} \to \mathbb{B}$, the interpretation $[.]_{\nu} : \mathcal{L} \to \mathbb{B}$ is defined by:

$$[\top]_{\nu} = \mathbf{1}, [\bot]_{\nu} = \mathbf{0}$$

$$if x \in \mathcal{P} \text{ then } [x]_{\nu} = \nu(x)$$

$$[\neg\phi]_{\nu} = \mathbf{1} \text{ iff } [\phi]_{\nu} = \mathbf{0}$$

$$[\phi \lor \psi]_{\nu} = \mathbf{1} \text{ iff } [\phi]_{\nu} = \mathbf{1} \text{ or } [\psi]_{\nu} = \mathbf{1}$$

Satisfying/Falsifying Assigments

An assignment is called

- \Box satisfying a formula ϕ iff $[\phi]_{\nu} = \mathbf{1}$.
- \Box falsifying a formula ϕ iff $[\phi]_{\nu} = \mathbf{0}$.

• A satisfying assignment for ϕ is a *model* of ϕ .

• A falsifying assignment for ϕ is a *counter-model* of ϕ .

Example:

For formula $((x \lor y) \land \neg z)$,

- $\blacksquare \ \{x, y, z\} \text{ is a counter-model},$
- $\blacksquare \ \{x, y, \neg z\} \text{ is a model}.$

Properties of Propositional Formulas (1/3)

■ formula \(\phi\) is satisfiable iff there exists interpretation $[.]_{\nu}$ with $[\phi]_{\nu} = 1$ check with limboole -s formula ϕ is valid iff for all interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu} = \mathbf{1}$ check with limboole formula ϕ is refutable iff exists interpretation $[.]_{\nu}$ with $[\phi]_{\nu} = \mathbf{0}$ check with limboole ■ formula \(\phi\) is unsatisfiable iff $[\phi]_{\nu} = \mathbf{0}$ for all interpretations $[.]_{\nu}$ check with limboole -s

J⊼∩

Properties of Propositional Formulas (2/3)

- a valid formula is called *tautology*
- an unsatisfiable formula is called *contradiction*

Properties of Propositional Formulas (3/3)

- A satisfiable formula is
 - possibly valid
 - possibly refutable
 - not unsatisfiable.
- A valid formula is
 - satisfiable
 - not refutable
 - not unsatisfiable.

- A refutable formula is
 - possibly satisfiable
 - possibly unsatisfiable

 \Box not valid.

- An unsatisfiable formula is
 - □ refutable
 - not valid
 - not satisfiable.

Example:

- **satisfiable**, but not valid: $a \leftrightarrow b$
- satisfiable and refutable: $(a \lor b) \land (\neg a \lor c)$
- valid, not refutable $\top \lor (a \land \neg a)$; not valid, refutable $(\bot \lor b)$

Further Connections between Formulas

- **A** formula ϕ is valid iff $\neg \phi$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\neg \phi$ is not valid.
- The formulas ϕ and ψ are equivalent iff $\phi \leftrightarrow \psi$ is valid.
- The formulas ϕ and ψ are equivalent iff $\neg(\phi \leftrightarrow \psi)$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\phi \nleftrightarrow \bot$.

Simple Algorithm for Satisfiability Checking

1 Algorithm: evaluate

Data: formula ϕ **Result: 1** iff ϕ is satisfiable

2 if ϕ contains a variable x then

```
pick v \in \{\top, \bot\}
3
4
        /* replace x by truth constant v, evaluate resulting formula */
5
        if evaluate(\phi[x|v]) then return 1;
        else return evaluate(\phi[x|\overline{v}]);
6
```

```
7 else
```

```
8
         switch \phi do
               case \top do return 1:
9
               case \perp do return 0;
10
               case \neg \psi do return ! evaluate(\psi)
                                                                   /* true iff \psi is false */;
11
               case \psi' \wedge \psi'' do
12
                     return evaluate(\psi') && evaluate(\psi'') /* true iff both \psi' and \psi'' are
13
                      true */
               case \psi' \vee \psi'' do
14
                     return evaluate(\psi') \parallel evaluate(\psi'') /* true iff \psi' or \psi'' is true */
15
                                                                                           38/48
```

Semantic Equivalence

Two formula ϕ and ψ are *semantic equivalent* (written as $\phi \Leftrightarrow \psi$) iff forall interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu} = [\psi]_{\nu}$.

- \blacksquare \Leftrightarrow is a *meta-symbol*, i.e., it is not part of the language.
- natural language: if and only if (iff)
- $\phi \Leftrightarrow \psi$ iff $\phi \leftrightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.

If ϕ and ψ are not equivalent, we write $\phi \not\Leftrightarrow \psi$.

Example:
$$\blacksquare a \lor \neg a \not\Leftrightarrow b \to \neg b$$
 $\blacksquare (a \lor b) \land \neg (a \lor b) \Leftrightarrow \bot$ $\blacksquare a \lor \neg a \Leftrightarrow b \lor \neg b$ $\blacksquare a \leftrightarrow (b \leftrightarrow c)) \Leftrightarrow ((a \leftrightarrow b) \leftrightarrow c)$

J⊼N

Examples of Semantic Equivalences (1/2)

$\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$	$\phi \lor \psi \Leftrightarrow \psi \lor \phi$	commutativity
$\phi \land (\psi \land \gamma) \Leftrightarrow (\phi \land \psi) \land \gamma$	$\phi \lor (\psi \lor \gamma) \Leftrightarrow (\phi \lor \psi) \lor \gamma$	associativity
$\phi \land (\phi \lor \psi) \Leftrightarrow \phi$	$\phi \lor (\phi \land \psi) \Leftrightarrow \phi$	absorption
$\phi \land (\psi \lor \gamma) \Leftrightarrow (\phi \land \psi) \lor (\phi \land \gamma)$	$\phi \lor (\psi \land \gamma) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \gamma)$	distributivity
$\neg(\phi \land \psi) \Leftrightarrow \neg \phi \lor \neg \psi$	$\neg(\phi\lor\psi)\Leftrightarrow\neg\phi\land\neg\psi$	laws of De Morgan
$\phi \leftrightarrow \psi \Leftrightarrow (\phi \to \psi) \land (\psi \to \phi)$	$\phi \leftrightarrow \psi \Leftrightarrow (\phi \land \psi) \lor (\neg \phi \land \neg \psi)$	synt. equivalence

J⊻U

Examples of Semantic Equivalences (2/2)

		1
$\phi \lor \psi \Leftrightarrow \neg \phi \to \psi$	$\phi \rightarrow \psi \Leftrightarrow \neg \psi \rightarrow \neg \phi$	implications
$\phi \wedge \neg \phi \Leftrightarrow \bot$	$\phi \vee \neg \phi \Leftrightarrow \top$	complement
$\neg\neg\phi \Leftrightarrow \phi$		double negation
$\phi \wedge \top \Leftrightarrow \phi$	$\phi \lor \bot \Leftrightarrow \phi$	neutrality
$\phi \vee \top \Leftrightarrow \top$	$\phi \wedge \bot \Leftrightarrow \bot$	
$\neg \top \Leftrightarrow \bot$	$\neg\bot \Leftrightarrow \top$	

Logic Entailment

Let $\phi_1, \ldots, \phi_n, \psi$ be propositional formulas. Then ϕ_1, \ldots, ϕ_n entail ψ (written as $\phi_1, \ldots, \phi_n \models \psi$) iff $[\phi_1]_{\nu} =$ $\mathbf{1}, \ldots, [\phi_n]_{\nu} = \mathbf{1}$ implies that $[\psi]_{\nu} = \mathbf{1}$.

Informal meaning: True premises derive a true conclusion.

⊨ is a *meta-symbol*, i.e., it is not part of the language.
 φ₁,...φ_n ⊨ ψ iff (φ₁ ∧ ... ∧ φ_n) → ψ is valid, i.e., we can express semantics by means of syntactics.

If $\phi_1, \ldots \phi_n$ do not entail ψ , we write $\phi_1, \ldots \phi_n \not\models \psi$.

Example:

$$a \models a \lor b$$
 $a \models a \lor \neg a$
 $a, a \to b \models b$
 $a, b \models a \land b$
 $a \models a \lor \neg a$
 $a, a \to b \models b$
 $a, b \models a \land b$
 $a \models a \land \neg a$
 $a \downarrow \models a \land \neg a$

Satisfiability Equivalence

Two formulas ϕ and ψ are *satisfiability-equivalent* (written as $\phi \Leftrightarrow_{SAT} \psi$) iff both formulas are satisfiable or both are contradictory.

- Satisfiability-equivalent formulas are not necessarily satisfied by the same assignments.
- Satisfiability equivalence is a weaker property than semantic equivalence.
- Often sufficient for simplification rules: If the complicated formula is satisfiable then also the simplified formula is satisfiable.

Example: Satisfiability Equivalence

positive pure literal elimination rule:

If a variable x occurs in a formula but $\neg x$ does not occur in the formula, then x can be substituted by \top . The resulting formula is satisfiability-equivalent.

Representing Functions as CNFs

Problem: Given the truth table of a Boolean function φ. How is the function represented in propositional logic?

Solution (in CNF):

- 1. Represent each assignment ν where ϕ has value **0** as clause:
 - $\Box \quad \text{If variable } x \text{ is } \mathbf{1} \text{ in } \nu, \text{ add} \\ \neg x \text{ to clause.}$
 - $\Box \quad \text{If variable } x \text{ is } \mathbf{0} \text{ in } \nu, \text{ add } x \\ \text{ to clause.}$
- 2. Connect all clauses by conjunction.

а	b	С	ϕ	clauses			
0	0	0	0	$a \vee b \vee c$			
0	0	1	1				
0	1	0	1				
0	1	1	0	$a \vee \neg b \vee \neg c$			
1	0	0	1				
1	0	1	0	$\neg a \lor b \lor \neg c$			
1	1	0	0	$\neg a \vee \neg b \vee c$			
1	1	1	1				
¢	=						
$(a \lor b \lor c) \land (a \lor \neg b \lor \neg c) \land$							
$(\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor c)$							
(/				

Representing Functions as DNFs

Problem: Given the truth table of a Boolean function φ. How is the function represented in propositional logic?

Solution (in DNF):

- 1. Represent each assignment ν where ϕ has value 1 as cube:
 - $\Box \quad \text{If variable } x \text{ is } \mathbf{1} \text{ in } \nu, \\ \text{add } x \text{ to cube.}$
 - $\Box \quad \text{If variable } x \text{ is } \mathbf{0} \text{ in } \nu, \\ \text{add } \neg x \text{ to cube.}$
- 2. Connect all cubes by disjunction.

a	b	c	ϕ	cubes				
0	0	0	0					
0	0	1	1	$\neg a \land \neg b \land c$				
0	1	0	1	$\neg a \land b \land \neg c$				
0	1	1	0					
1	0	0	1	$a \wedge \neg b \wedge \neg c$				
1	0	1	0					
1	1	0	0					
1	1	1	1	$a \wedge b \wedge c$				
¢	$\rightarrow =$							
$(\neg a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor$								
$(a \land \neg b \land \neg c) \lor (a \land b \land c)$								
(- / (-)	. (

Functional Completeness

In propositional logic there are

- \Box 2 functions of arity 0 (\top , \bot)
- □ 4 functions of arity 1 (e.g., not)
- □ 16 functions of arity 2 (e.g., and, or, ...)
- $\Box 2^{2^n}$ functions of arity n.
- A function of arity n has 2ⁿ different combinations of arguments (lines in the truth table).
- A functions maps its arguments either to **1** or **0**.

A set of functions is called *functional complete* for propositional logic iff it is possible to express all other functions of propositional logic with functions from this set.

 $\{\neg, \land\}, \{\neg, \lor\}, \{nand\}$ are functional complete. **J\simeqU**

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k colors, such that there is no edge $(v, w) \in E$, with vertices v and w colored in the same color.

Encoding:

- 1. Propositional variables: v_j ... node $v \in V$ has color j $(1 \le j \le k)$
- 2. each node has a color:

$$\bigwedge_{v \in V} (\bigvee_{1 \le j \le k} v_j)$$

- 3. each node has just one color: $\neg(v_i \land v_j)$ with $v \in V, 1 \le i < j \le k$
- 4. neighbors have different colors: $\neg(v_i \land w_i)$ with $(v, w) \in E, 1 \le i \le k$

2-coloring of $(\{a, b, c\}, \{(a, b), (b, c)\})$ 1. $a_1, a_2, b_1, b_2, c_1, c_2$ 2. $a_1 \lor a_2, b_1 \lor b_2, c_1 \lor c_2$ 3. $\neg (a_1 \land a_2), \neg (b_1 \land b_2), \neg (c_1 \land c_2)$ 4. $\neg (a_1 \land b_1), \neg (a_2 \land b_2) \neg (b_1 \land c_1), \neg (b_2 \land c_2)$

J⊼∩