
VL LOGIK:
PROPOSITIONAL LOGIC
WS 2016/2017 (342.208)

Armin Biere, FMV (biere@jku.at)
Martina Seidl, FMV (martina.seidl@jku.at)
Version 2016.3

0/48

Propositions

A proposition is an atomic statement that is either true or false.

Example:

� Alice comes to the party.

� It rains.

With connectives, propositions can be combined.

Example:

� Alice comes to the party, Bob as well, but not Cecile.

� If it rains, the street is wet.

1/48

Propositional Logic

� two truth values (Boolean domain): true/false,
verum/falsum, on/off, 1/0

� language elements
� atomic propositions (atoms, variables)

• no internal structure
• either true or false

� logic connectives: not (¬), and (∧), or (∨), . . .
• operators for construction of composite propositions
• concise meaning
• argument(s) and return value from Boolean domain

� parenthesis

Example: formula of propositional logic: (¬t ∨ s) ∧ (t ∨ s) ∧ (¬t ∨ ¬s)

atoms: t, s, connectives: ¬, ∨, ∧, parenthesis for structuring the expression

2/48

Background

� historical origins: ancient Greeks

� in philosophy, mathematics, and computer science
� two very basic principles:

� Law of Excluded Middle:
A proposition is true or its negation is true.

� Law of Contradiction:
No expression is both true and false at the same time.

� very simple language
� no objects, no arguments to propositions
� no functions, no quantifiers

� solving is easy (relative to other logics)

� many applications in industry

3/48

Syntax of Propositional Logic (1/2)

The set L of well-formed propositional formulas is the smallest
set such that

1. >,⊥ ∈ L;

2. P ⊆ L where P is the set of atomic propositions (atoms,
variables);

3. if φ ∈ L then (¬φ) ∈ L;

4. if φ, ψ ∈ L then (φ ◦ ψ) ∈ L with ◦ ∈ {∨,∧,↔,→}.

L is the language of propositional logic. The elements of L are
propositional formulas.

4/48

Syntax of Propositional Logic (2/2)

In Backus-Naur form (BNF) propositional formulas are
described as follows:

φ ::= > | ⊥ | p | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (φ↔ φ) | (φ→ φ)

Example:
� >
� a

� (¬a)

� (¬>)

� (¬(¬a))

� (a1 ∨ a2)
� (¬(a ∨ b))
� (¬(a↔ b))

� (((¬a) ∨ a′)↔ (b→ c))

� (((a1 ∨ a2) ∨ (a3 ∧ ⊥))→ b)

5/48

Rules of Precedence

To reduce the number of parenthesis, we use the following
conventions (in case of doubt, uses parenthesis!):

� ¬ is stronger than ∧
� ∧ is stronger than ∨
� ∨ is stronger than→
� → is stronger than↔
� Binary operators of same strength are assumed to be left

parenthesized (also called “left associative”)

Example:
� ¬a ∧ b ∨ c→ d↔ f is the same as (((((¬a) ∧ b) ∨ c)→ d)↔ f).

� a′ ∨ a′′ ∨ a′′ ∧ b′ ∨ b′′ is the same as (((a′ ∨ a′′) ∨ (a′′ ∧ b′)) ∨ b′′).

� a′ ∧ a′′ ∧ a′′ ∨ b′ ∧ b′′ is the same as (((a′ ∧ a′′) ∧ a′′′) ∨ (b′ ∧ b′′)).

6/48

Formula Tree

� formulas have a tree structure
� inner nodes: connectives
� leaves: truth constants, variables

� default: inner nodes have one child node (negation) or
two nodes as children (other connectives).

� tree structure reflects the use of parenthesis

� simplification:
disjunction and conjunction may be considered as n-ary
operators,
i.e., if a node N and its child node C are of the same kind
of connective (conjunction / disjunction), then the children
of C can become direct children of N and the C is
removed.

7/48

Formula Tree: Example (1/2)

The formula

(a ∨ (b ∨ ¬c))↔ (> ∧ ((a→ ¬b) ∨ (⊥ ∨ a ∨ b)))

has the formula tree

↔

∨

a ∨

b ¬

c

∧

> ∨

→

a ¬

b

∨

∨

⊥ a

b

8/48

Formula Tree: Example (2/2)

The formula

(a ∨ (b ∨ ¬c))↔ (> ∧ ((a→ ¬b) ∨ (⊥ ∨ a ∨ b)))

has the simplified formula tree

↔

∨

a b ¬

c

∧

> ∨

→

a ¬

b

⊥ a b

9/48

Subformulas

An immediate subformula is defined as follows:

� truth constants and atoms have no immediate subformula.
� only immediate subformula of ¬φ is φ.
� formula φ ◦ ψ (◦ ∈ {∧,∨,↔,→}) has immediate

subformulas φ and ψ.

Informal: a subformula is a formula that is part of a formula

The set of subformulas of a formula φ is the smallest set S with

1. φ ∈ S
2. if ψ ∈ S then all immediate subformulas of ψ are in S

The subformulas of (a ∨ b)→ (c ∧ ¬¬d) are
{a, b, c, d,¬d,¬¬d, a∨b, c∧¬¬d, (a∨b)→ (c∧¬¬d)}

10/48

Limboole

� SAT-solver
� available at http://fmv.jku.at/limboole/

� input format in BNF:

〈expr〉 ::= 〈iff 〉
〈iff 〉 ::= 〈implies〉 | 〈implies〉 “<�>” 〈implies〉

〈implies〉 ::= 〈or〉 | 〈or〉 “�>” 〈or〉 | 〈or〉 “<�” 〈or〉
〈or〉 ::= 〈and〉 | 〈and〉 “|” 〈and〉
〈and〉 ::= 〈not〉 | 〈not〉 “&” 〈not〉
〈not〉 ::= 〈basic〉 | “!” 〈not〉
〈basic〉 ::= 〈var〉 | “(” 〈expr〉 “)”

where ’var’ is a string over letters, digits, and – _ . [] $ @

In Limboole the formula (a ∨ b)→ (c ∧ ¬¬d) is represented as
((a | b) -> (c & !!d)) 11/48

http://fmv.jku.at/limboole/

Special Formula Structures

� literal: variable or a negated variable (also (negated)
truth constants)
� examples of literals: x,¬x, y,¬y
� If l is a literal with l = x or l = ¬x then var(l) = x.
� For literals we use letter l, k (possibly indexed or primed).
� In principle, we identify ¬¬l with l.

� clause: disjunction of literals
� unary clause (clause of size one): l where l is a literal
� empty clause (clause of size zero): ⊥
� examples of clauses: (x ∨ y), (¬x ∨ x′ ∨ ¬x′′), x,¬y

� cube: conjunction of literals
� unary cube (cubes of size one): l where l is a literal
� empty cubes (cubes of size zero): >
� examples of cubes: (x ∧ y), (¬x ∧ x′ ∧ ¬x′′), x,¬y

12/48

Negation Normal Form (1/2)

Negation Normal Form (NNF) is defined as follows:

� Literals and truth constants are in NNF;

� φ ◦ ψ (◦ ∈ {∨,∧}) is in NNF iff φ and ψ are in NNF;

� no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions,
disjunctions, and negations and negations only occur in front of
variables and constants.

13/48

Negation Normal Form (2/2)

If a formula is in negation normal form then

� in the formula tree, nodes with negation symbols only
occur directly before leaves.

� there are no subformulas of the form ¬φ where φ is
something else than a variable or a constant.

� it does not contain NAND, NOR, XOR, equivalence, and
implication connectives.

Example: The formula ((x ∨ ¬x1) ∧ (x ∨ (¬z ∨ ¬x1))) is in NNF but

¬((x ∨ ¬x1) ∧ (x ∨ (¬z ∨ ¬x1))) is not in NNF.

14/48

Conjunctive Normal Form (CNF)

A propositional formula is in conjunctive normal form
(CNF) iff it is a conjunction of clauses.

A formula in conjunctive normal form is

� in negation normal form

� > if it contains no clauses

� easy to check whether it can be refuted

remark: CNF is the input of most SAT-solvers (DIMACS format)

15/48

Disjunctive Normal Form (DNF)

A propositional formula is in disjunctive normal form
(DNF) if it is a disjunction of cubes.

A formula in disjunctive normal form is

� in negation normal form

� ⊥ if it contains no cubes

� easy to check whether it can be satisfied

16/48

Examples for CNF and DNF

Examples CNF
� >

� ⊥

� a

� ¬a

� l1 ∧ l2 ∧ l3
� l1 ∨ l2 ∨ l3
� (a1 ∨ ¬a2) ∧ (a1 ∨ b2 ∨ a2) ∧ a2
� ((l11 ∨ . . . ∨ l1m1) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnmn))

Examples DNF
� >

� ⊥

� a

� ¬a

� l1 ∧ l2 ∧ l3
� l1 ∨ l2 ∨ l3
� (a1 ∧ ¬a2) ∨ (a1 ∧ b2 ∧ a2) ∨ a2
� ((l11 ∧ . . . ∧ l1m1) ∨ . . . ∨ (ln1 ∧ . . . ∧ lnmn))

17/48

Conventions

we use the following conventions unless stated otherwise:

� a, b, c, x, y, z denote variables and l, k denote literals

� φ, ψ, γ denote arbitrary formulas

� C,D denote clauses or cubes (clear from context)
� clauses are also written as sets

� (l1 ∨ . . . ∨ ln) = {l1, . . . ln}
� to add a literal l to clause C, we write C ∪ {l}
� to remove a literal l from clause C, we write C\{l}

� formulas in CNF are also written as sets of sets
� ((l11 ∨ . . . ∨ l1m1

) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnmn
)) =

{{l11, . . . l1m1}, . . . , {ln1, . . . lnmn}}
� to add a clause C to CNF φ, we write φ ∪ {C}
� to remove a clause C from CNF φ, we write φ\{C}

18/48

Negation

� unary connective ¬ (operator with exactly one argument)

� negating the truth value of its argument

� alternative notation: !φ, φ,−φ,NOTφ

truth
table:

φ ¬φ
0 1
1 0

set
view:

Example:
� If the atom “It rains.” is true then the negation “It does not rain.” is false.

� If atom a is true then ¬a is false.

� If formula ((a ∨ x) ∧ y) is true then formula ¬((a ∨ x) ∧ y) is false.

� If formula ((b→ y) ∧ z) is true then formula ¬((b→ y) ∧ z) is false.

19/48

Conjunction

� a conjunction is true iff both arguments are true
� alternative notation for φ∧ψ: φ&ψ, φψ, φ ∗ψ, φ ·ψ, φANDψ
� For (φ1 ∧ . . . ∧ φn) we also write

∧n
i=1 φi.

truth
table:

φ ψ φ ∧ ψ
0 0 0
0 1 0
1 0 0
1 1 1

set
view:

Example:
� (a ∧ ¬a) is always false.

� (> ∧ a) is true if a is true. (⊥ ∧ φ) is always false.

� If (a ∨ b) is true and (¬c ∨ d) is true then (a ∨ b) ∧ (¬c ∨ d) is true.

20/48

Disjunction

� a disjunction is true iff at least one of the arguments is true
� alternative notation for φ ∨ ψ: φ|ψ, φ+ ψ, φORψ

� For (φ1 ∨ . . . ∨ φn) we also write
∨n
i=1 φi.

truth
table:

φ ψ φ ∨ ψ
0 0 0
0 1 1
1 0 1
1 1 1

set
view:

Example:
� (a ∨ ¬a) is always true.

� (> ∨ a) is always true. (⊥ ∨ a) is true if a is true.

� If (a→ b) is true and (¬c→ d) then (a→ b) ∨ (¬c→ d) is true.

21/48

Implication

� an implication is true iff the first argument is false or both
arguments are true (Ex falsum quodlibet.)

� alternative notation: φ ⊃ ψ, φ IMPL ψ

truth
table:

φ ψ φ→ ψ

0 0 1
0 1 1
1 0 0
1 1 1

set
view:

Example:
� If atom "It rains." is true and atom "The street is wet." is true then the

statement "If it rains, the street is wet." is true.

� (⊥ → a) and (a→ a) are always true. > → φ is true if φ is true.

22/48

Equivalence

� true iff both subformulas have the same value
� alternative notation: φ = ψ, φ ≡ ψ, φ ∼ ψ

truth
table:

φ ψ φ↔ ψ

0 0 1
0 1 0
1 0 0
1 1 1

set
view:

Example:
� The formula a↔ a is always true.

� The formula a↔ b is true iff a is true and b is true or a is false and b is
false.

� > ↔ ⊥ is never true.

23/48

The Logic Connectives at a Glance

φ ψ > ⊥ ¬φ φ ∧ ψ φ ∨ ψ φ→ ψ φ↔ ψ φ⊕ ψ φ ↑ ψ φ ↓ ψ
0 0 1 0 1 0 0 1 1 0 1 1
0 1 1 0 1 0 1 1 0 1 1 0
1 0 1 0 0 0 1 0 0 1 1 0
1 1 1 0 0 1 1 1 1 0 0 0

Example:
φ ψ ¬(¬φ ∧ ¬ψ) ¬φ ∨ ψ (φ→ ψ) ∧ (ψ → φ)

0 0 0 1 1
0 1 1 1 0
1 0 1 0 0
1 1 1 1 1

Observation: connectives can be expressed by other connectives.
24/48

Other Connectives

� there are 16 different functions for binary connectives
� so far, we had ∧,∨,↔,→
� further connectives:

� φ 6↔ ψ (also ⊕, xor, antivalence)
� φ ↑ ψ (nand, Sheffer Stroke Function)
� φ ↓ ψ (nor, Pierce Function)

φ ψ φ 6↔ ψ φ ↑ ψ φ ↓ ψ
0 0 0 1 1
0 1 1 1 0
1 0 1 1 0
1 1 0 0 0

� nor and nand can express every other boolean function
(i.e., they are functional complete)

� often used for building digital circuits (like processors)

25/48

Propositional Formulas and Digital Circuits

and gate

A

B nand gate

A

B

or gate

A

B nor gate

A

B

xor gate

A

B not gate
A

26/48

Example of a Digital Circuit: Half Adder

x y c s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

From the truth table, we see
that

c⇔ x ∧ y

and
s⇔ x⊕ y.

x

y

s

c

27/48

Different Notations
Verilog

operator logic circuits C/C++/Java/C# VHDL Limboole
1 > 1 true 1 −
0 ⊥ 0 false 0 −

negation ¬φ φ̄ −φ !φ not φ !φ

conjunction φ ∧ ψ φψ φ · ψ φ && ψ φ and ψ φ & ψ

disjunction φ ∨ ψ φ+ ψ φ || ψ φ or ψ φ | ψ
exclusive or φ 6↔ ψ φ⊕ ψ φ != ψ φ xor ψ −
implication φ→ ψ φ ⊃ ψ − − φ -> ψ

equivalence φ↔ ψ φ = ψ φ == ψ φ xnor ψ φ <-> ψ

Example:
� (a ∨ (b ∨ ¬c))↔ (> ∧ ((a→ ¬b) ∨ (c ∨ a ∨ b)))

� (a+ (b+ c̄)) = c ((a ⊃ −b) + (0 + a+ b))

� (a || (b || !c)) == (c && ((! a || ! b) || (false || a || b)))

28/48

All 16 Binary Functions

φ ψ co
ns

ta
nt

0

no
r

xo
r

na
nd

an
d

eq
ui

va
le

nc
e

im
pl

ic
at

io
n

or co
ns

ta
nt

1

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

29/48

Assignment

� a variable can be assigned one of two values from the
two-valued domain B, where B = {1,0}

� the mapping ν : P → B is called assignment, where P is
the set of atomic propositions

� we sometimes write an assignment ν as set V with
V ⊆ P ∪ {¬x|x ∈ P} such that
� x ∈ V iff ν(x) = 1
� ¬x ∈ V iff ν(x) = 0

� for n variables, there are 2n assignments possible

� an assignment corresponds to one line in the truth table

30/48

Assignment: Example

x y z (x ∨ y) ∧ ¬z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

� one assignment: ν(x) = 1, ν(y) = 0, ν(z) = 1
� alternative notation: V = {x,¬y, z}
� observation: A variable assignment determines the truth

value of the formulas containing these variables.
31/48

Semantics of Propositional Logic

Given assignment ν : P → B, the interpretation [.]ν : L → B is
defined by:

� [>]ν = 1, [⊥]ν = 0

� if x ∈ P then [x]ν = ν(x)

� [¬φ]ν = 1 iff [φ]ν = 0

� [φ ∨ ψ]ν = 1 iff [φ]ν = 1 or [ψ]ν = 1

32/48

Satisfying/Falsifying Assigments

� An assignment is called
� satisfying a formula φ iff [φ]ν = 1.
� falsifying a formula φ iff [φ]ν = 0.

� A satisfying assignment for φ is a model of φ.

� A falsifying assignment for φ is a counter-model of φ.

Example:

For formula ((x ∨ y) ∧ ¬z),

� {x, y, z} is a counter-model,

� {x, y,¬z} is a model.

33/48

Properties of Propositional Formulas (1/3)

� formula φ is satisfiable iff
there exists interpretation [.]ν with [φ]ν = 1

check with limboole -s

� formula φ is valid iff
for all interpretations [.]ν it holds that [φ]ν = 1

check with limboole

� formula φ is refutable iff
exists interpretation [.]ν with [φ]ν = 0

check with limboole

� formula φ is unsatisfiable iff
[φ]ν = 0 for all interpretations [.]ν

check with limboole -s

34/48

Properties of Propositional Formulas (2/3)

� a valid formula is called tautology

� an unsatisfiable formula is called contradiction

Example:

� > is valid.

� ⊥ is unsatisfiable.

� (a ∨ ¬b) ∧ (¬a ∨ b) is
refutable.

� a→ b is satisfiable.

� a↔ ¬a is a
contradiction.

� (a ∨ ¬b) ∧ (¬a ∨ b) is
satisfiable.

35/48

Properties of Propositional Formulas (3/3)
� A satisfiable formula is

� possibly valid
� possibly refutable
� not unsatisfiable.

� A valid formula is
� satisfiable
� not refutable
� not unsatisfiable.

� A refutable formula is
� possibly satisfiable
� possibly unsatisfiable
� not valid.

� An unsatisfiable formula is
� refutable
� not valid
� not satisfiable.

Example:

� satisfiable, but not valid: a↔ b

� satisfiable and refutable: (a ∨ b) ∧ (¬a ∨ c)
� valid, not refutable > ∨ (a ∧ ¬a); not valid, refutable

(⊥ ∨ b)
36/48

Further Connections between Formulas

� A formula φ is valid iff ¬φ is unsatisfiable.

� A formula φ is satisfiable iff ¬φ is not valid.

� The formulas φ and ψ are equivalent iff φ↔ ψ is valid.

� The formulas φ and ψ are equivalent iff ¬(φ↔ ψ) is
unsatisfiable.

� A formula φ is satisfiable iff φ 6↔ ⊥.

37/48

Simple Algorithm for Satisfiability Checking
1 Algorithm: evaluate

Data: formula φ
Result: 1 iff φ is satisfiable

2 if φ contains a variable x then
3 pick v ∈ {>,⊥}

4 /* replace x by truth constant v, evaluate resulting formula */

5 if evaluate(φ[x|v]) then return 1;
6 else return evaluate(φ[x|v]) ;
7 else
8 switch φ do
9 case > do return 1;

10 case ⊥ do return 0;
11 case ¬ψ do return ! evaluate(ψ) /* true iff ψ is false */ ;
12 case ψ′ ∧ ψ′′ do
13 return evaluate(ψ′) && evaluate(ψ′′) /* true iff both ψ′ and ψ′′ are

true */
14 case ψ′ ∨ ψ′′ do
15 return evaluate(ψ′) || evaluate(ψ′′) /* true iff ψ′ or ψ′′ is true */

38/48

Semantic Equivalence

Two formula φ and ψ are semantic equivalent (written as
φ⇔ ψ) iff forall interpretations [.]ν it holds that [φ]ν = [ψ]ν .

� ⇔ is a meta-symbol, i.e., it is not part of the language.
� natural language: if and only if (iff)
� φ⇔ ψ iff φ↔ ψ is valid, i.e., we can express semantics by

means of syntactics.
� If φ and ψ are not equivalent, we write φ 6⇔ ψ.

Example:
� a ∨ ¬a 6⇔ b→ ¬b
� a ∨ ¬a⇔ b ∨ ¬b

� (a ∨ b) ∧ ¬(a ∨ b)⇔ ⊥
� a↔ (b↔ c))⇔ ((a↔ b)↔ c

39/48

Examples of Semantic Equivalences (1/2)

φ ∧ ψ ⇔ ψ ∧ φ φ ∨ ψ ⇔ ψ ∨ φ commutativity

φ ∧ (ψ ∧ γ)⇔ (φ ∧ ψ) ∧ γ φ ∨ (ψ ∨ γ)⇔ (φ ∨ ψ) ∨ γ associativity

φ ∧ (φ ∨ ψ)⇔ φ φ ∨ (φ ∧ ψ)⇔ φ absorption

φ ∧ (ψ ∨ γ)⇔ (φ ∧ ψ) ∨ (φ ∧ γ) φ ∨ (ψ ∧ γ)⇔ (φ ∨ ψ) ∧ (φ ∨ γ) distributivity

¬(φ ∧ ψ)⇔ ¬φ ∨ ¬ψ ¬(φ ∨ ψ)⇔ ¬φ ∧ ¬ψ laws of De Morgan

φ↔ ψ ⇔ (φ→ ψ) ∧ (ψ → φ) φ↔ ψ ⇔ (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ) synt. equivalence

40/48

Examples of Semantic Equivalences (2/2)

φ ∨ ψ ⇔ ¬φ→ ψ φ→ ψ ⇔ ¬ψ → ¬φ implications

φ ∧ ¬φ⇔ ⊥ φ ∨ ¬φ⇔ > complement

¬¬φ⇔ φ double negation

φ ∧ > ⇔ φ φ ∨ ⊥ ⇔ φ neutrality

φ ∨ > ⇔ > φ ∧ ⊥ ⇔ ⊥

¬> ⇔ ⊥ ¬⊥ ⇔ >

41/48

Logic Entailment

Let φ1, . . . φn, ψ be propositional formulas. Then φ1, . . . φn
entail ψ (written as φ1, . . . , φn |= ψ) iff [φ1]ν =

1, . . . [φn]ν = 1 implies that [ψ]ν = 1.

Informal meaning: True premises derive a true conclusion.

� |= is a meta-symbol, i.e., it is not part of the language.
� φ1, . . . φn |= ψ iff (φ1 ∧ . . . ∧ φn)→ ψ is valid, i.e., we can

express semantics by means of syntactics.
� If φ1, . . . φn do not entail ψ, we write φ1, . . . φn 6|= ψ.

Example:

� a |= a ∨ b
� a, b |= a ∧ b

� |= a ∨ ¬a
� 6|= a ∧ ¬a

� a, a→ b |= b

� ⊥ |= a ∧ ¬a
42/48

Satisfiability Equivalence

Two formulas φ and ψ are satisfiability-equivalent (written
as φ⇔SAT ψ) iff both formulas are satisfiable or both are
contradictory.

� Satisfiability-equivalent formulas are not necessarily
satisfied by the same assignments.

� Satisfiability equivalence is a weaker property than
semantic equivalence.

� Often sufficient for simplification rules: If the complicated
formula is satisfiable then also the simplified formula is
satisfiable.

43/48

Example: Satisfiability Equivalence

positive pure literal elimination rule:

If a variable x occurs in a formula but ¬x does not occur in the
formula, then x can be substituted by >. The resulting formula
is satisfiability-equivalent.

Example:

� x⇔SAT >, but x 6⇔ >
� (a ∧ b) ∨ (¬c ∧ a)⇔SAT b ∨ ¬c, but

(a ∧ b) ∨ (¬c ∧ a) 6⇔ b ∨ ¬c

44/48

Representing Functions as CNFs

� Problem: Given the truth table of a Boolean function φ.
How is the function represented in propositional logic?

Solution (in CNF):
1. Represent each assignment

ν where φ has value 0 as
clause:
� If variable x is 1 in ν, add
¬x to clause.

� If variable x is 0 in ν, add x
to clause.

2. Connect all clauses by
conjunction.

a b c φ clauses
0 0 0 0 a ∨ b ∨ c
0 0 1 1
0 1 0 1
0 1 1 0 a ∨ ¬b ∨ ¬c
1 0 0 1
1 0 1 0 ¬a ∨ b ∨ ¬c
1 1 0 0 ¬a ∨ ¬b ∨ c
1 1 1 1
φ =

(a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c) ∧
(¬a∨ b∨¬c)∧ (¬a∨¬b∨ c)

45/48

Representing Functions as DNFs

� Problem: Given the truth table of a Boolean function φ.
How is the function represented in propositional logic?

Solution (in DNF):
1. Represent each

assignment ν where φ has
value 1 as cube:
� If variable x is 1 in ν,

add x to cube.
� If variable x is 0 in ν,

add ¬x to cube.

2. Connect all cubes by
disjunction.

a b c φ cubes
0 0 0 0
0 0 1 1 ¬a ∧ ¬b ∧ c
0 1 0 1 ¬a ∧ b ∧ ¬c
0 1 1 0
1 0 0 1 a ∧ ¬b ∧ ¬c
1 0 1 0
1 1 0 0
1 1 1 1 a ∧ b ∧ c

φ =

(¬a∧¬b∧c)∨(¬a∧b∧¬c)∨
(a ∧ ¬b ∧ ¬c) ∨ (a ∧ b ∧ c)

46/48

Functional Completeness

� In propositional logic there are
� 2 functions of arity 0 (>,⊥)
� 4 functions of arity 1 (e.g., not)
� 16 functions of arity 2 (e.g., and, or, ...)
� 22

n

functions of arity n.

� A function of arity n has 2n different combinations of
arguments (lines in the truth table).

� A functions maps its arguments either to 1 or 0.

A set of functions is called functional complete for propo-
sitional logic iff it is possible to express all other functions
of propositional logic with functions from this set.

{¬,∧}, {¬,∨}, {nand} are functional complete.
47/48

Encoding the k-Coloring Problem

Given graph (V,E) with vertices V and edges E. Color each node with one
of k colors, such that there is no edge (v, w) ∈ E, with vertices v and w
colored in the same color.

Encoding:

1. Propositional variables: vj ... node
v ∈ V has color j (1 ≤ j ≤ k)

2. each node has a color:∧
v∈V

(
∨

1≤j≤k

vj)

3. each node has just one color:
¬(vi ∧ vj) with v ∈ V, 1 ≤ i < j ≤ k

4. neighbors have different colors:
¬(vi ∧ wi) with (v, w) ∈ E, 1 ≤ i ≤ k

2-coloring of
({a, b, c}, {(a, b), (b, c)})

1. a1, a2, b1, b2, c1, c2

2. a1 ∨ a2, b1 ∨
b2, c1 ∨ c2

3. ¬(a1 ∧ a2),¬(b1 ∧
b2),¬(c1 ∧ c2)

4. ¬(a1 ∧ b1),¬(a2 ∧
b2) ¬(b1 ∧
c1),¬(b2 ∧ c2)

48/48

