VL LOGIK:
PROPOSITIONAL LOGIC

WS 2016/2017 (342.208)

4

Armin Biere, FMV (biere@jku.at)
Martina Seidl, FMV (martina.seidl@jku.at)
Version 2016.3

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

0/48

Propositions

A proposition is an atomic statement that is either true or false.

Example:
B Alice comes to the party.

W It rains.

With connectives, propositions can be combined.

Example:
B Alice comes to the party, Bob as well, but not Cecile.

B [f it rains, the street is wet.

JXU 1/48

Propositional Logic

B {wo truth values (Boolean domain): true/false,
verum/falsum, on/off, 1/0
B /anguage elements
O atomic propositions (atoms, variables)
* no internal structure
« either true or false
O logic connectives: not (=), and (A), or (V), ...
+ operators for construction of composite propositions
+ concise meaning
« argument(s) and return value from Boolean domain
O parenthesis

Example: formula of propositional logic: (-t Vv s) A (tVs) A (—tV —s)

atoms: t, s, connectives: —, V, A, parenthesis for structuring the expression

JXU 2/48

Background

B historical origins: ancient Greeks

B in philosophy, mathematics, and computer science
B two very basic principles:

O Law of Excluded Middle:
A proposition is true or its negation is true.
O Law of Contradiction:

No expression is both true and false at the same time.

B very simple language
O no objects, no arguments to propositions
O no functions, no quantifiers

B solving is easy (relative to other logics)

B many applications in industry

JXU

3/48

Syntax of Propositional Logic (1/2)

The set £ of well-formed propositional formulas is the smallest
set such that

1. T,L e L;

2. P C L where P is the set of atomic propositions (atoms,
variables);

3. if ¢ € L then (—¢) € L;
4. if ¢,1p € Lthen (pop) € Lwitho € {V, A, <>, —}.

L is the language of propositional logic. The elements of £ are
propositional formulas.

JXU 4/48

Syntax of Propositional Logic (2/2)

In Backus-Naur form (BNF) propositional formulas are
described as follows:

¢u=T[L[pl (=) [(®V)[(9NP)| ()¢)| (d—)

Example:
BT B () N (o(wa) B (=(aVD))

o B(-T) W (a1Va) W (=(ae b))
B ((~a)Vd) < (b))
W (a1 Va) V(a3 A L)) = b)

JXU 5/48

Rules of Precedence

To reduce the number of parenthesis, we use the following
conventions (in case of doubt, uses parenthesis!):

B - is stronger than A

B A is stronger than v

B V is stronger than —

B — is stronger than «

B Binary operators of same strength are assumed to be left
parenthesized (also called “left associative”)

Example:
B -aAbVec—d<+ fisthesameas (((((—a) Ab) V) = d) <> f).
B J Vvad' va' AV Vb isthe sameas (((a’' Va”) Vv (a’ AV)) V).
B o Ad' ANa”" VU AD isthe same as (((a/ Aa”) Aad”") Vv (V' ADT)).

JXU 6/48

Formula Tree

B formulas have a tree structure
O inner nodes: connectives
O leaves: truth constants, variables
B default: inner nodes have one child node (negation) or
two nodes as children (other connectives).
B tree structure reflects the use of parenthesis
B simplification:
disjunction and conjunction may be considered as n-ary
operators,
i.e., if anode N and its child node C are of the same kind
of connective (conjunction / disjunction), then the children
of C can become direct children of N and the C'is
removed.

JXU 7/48

Formula Tree: Example (1/2)

The formula
(aVvV(bV-=c)) < (TA((a—-b)V(LVaVv)))

V/H\/\
a/ \\/ T/ \V
SN N

|
JXU DO € 8/48

Formula Tree: Example (2/2)

The formula
(aVvV(bV-=c)) < (TA((a—-b)V(LVaVv)))

has the simplified formula tree

/ AN

\Y
|
b

|
JXU b 9/48

Subformulas

An immediate subformula is defined as follows:

B truth constants and atoms have no immediate subformula.

B only immediate subformula of —¢ is ¢.

B formula ¢ o (o € {A,V, >, —}) has immediate
subformulas ¢ and .

Informal: a subformula is a formula that is part of a formula
The set of subformulas of a formula ¢ is the smallest set .S with

1. o€ S
2. if ¢ € S then all immediate subformulas of ¢ are in S

The subformulas of (a V b) — (¢ A =—d) are
{a,b,c,d,~d,=—d,aVb,cA—=—=d, (aVb) = (cA——d)}

JXU 10/48

Limboole

B SAT-solver

W available at http://fmv.jku.at/limboole/
B input format in BNF:

(expr) == (uff)
(iff) == (implies) | (implies) “<->" (implies)
(implies) ::= (or) | (or) “->" (or) | (or) “<-" (or)

(ory == (and) | (and) “1” (and)

(and) == (not) | (not) “&" (not)

(not) == (basic) | “1" (not)

(basic) == (var) |“C {expr)“)”

where 'var’ is a string over letters, digits,and—_ . []$ @

In Limboole the formula (a V b) — (¢ A =—d) is represented as
JXU (Ga 1'D) -> (c & !d) 11/48

http://fmv.jku.at/limboole/

Special Formula Structures

B J/iteral: variable or a negated variable (also (negated)
truth constants)
O examples of literals: z, -z, y, ~y
O If I is a literal with | = x or [= -z then var(l) = z.
O For literals we use letter [, k (possibly indexed or primed).
O In principle, we identify ——i with .
B clause: disjunction of literals
O unary clause (clause of size one): [where [is a literal
0 empty clause (clause of size zero): L
O examples of clauses: (z V y), (-z V2’V =), z,—y
B cube: conjunction of literals
O unary cube (cubes of size one): [where [is a literal
O empty cubes (cubes of size zero): T
O examples of cubes: (z Ay), (—mz Az’ A—z”),z,—y

JXU 12/48

Negation Normal Form (1/2)

Negation Normal Form (NNF) is defined as follows:
B Literals and truth constants are in NNF;
B oo (o €{V,A})isin NNFiff ¢ and ¢ are in NNF;
B no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions,
disjunctions, and negations and negations only occur in front of

variables and constants.

JXU 13/48

Negation Normal Form (2/2)

If a formula is in negation normal form then

B in the formula tree, nodes with negation symbols only
occur directly before leaves.

B there are no subformulas of the form —¢ where ¢ is
something else than a variable or a constant.

M it does not contain NAND, NOR, XOR, equivalence, and
implication connectives.

Example: Theformula ((z v —z1) A (z V (-2 V —a1))) is in NNF but

=((z V—-z1) A (z V (=2 V —z1))) is not in NNF.

JXU 14/48

Conjunctive Normal Form (CNF)

A propositional formula is in conjunctive normal form
(CNF) iff it is a conjunction of clauses.

A formula in conjunctive normal form is

B in negation normal form
B T if it contains no clauses
B easy to check whether it can be refuted

remark: CNF is the input of most SAT-solvers (DIMACS format)

JXU 15/48

Disjunctive Normal Form (DNF)

A propositional formula is in disjunctive normal form
(DNF) if it is a disjunction of cubes.

A formula in disjunctive normal form is

B in negation normal form
B L if it contains no cubes
B easy to check whether it can be satisfied

JXU 16/48

Examples for CNF and DNF

Examples CNF
T B NN
H L B ViaVi3
H B (a1 V-a2)A(ar Vb Vaz)Aas
- B (Ve Vim) A At VeV)

Examples DNF

mT B i AIAI3

| B 1ViaVis

H . B (a1 A—a2) V(a1 Aba Aa2) Vas

B B (A Alim) Voo V(i Ao Almy,))

JXU

17/48

Conventions

we use the following conventions unless stated otherwise:

W o, b, c x,y, 2 denote variables and [, k denote literals
B ¢, 4, denote arbitrary formulas
B C, D denote clauses or cubes (clear from context)
B clauses are also written as sets

O (11\/...\/ln) :{ll,...ln}

O to add a literal I to clause C, we write C' U {I}

O to remove a literal [from clause C, we write C\{i}

B formulas in CNF are also written as sets of sets
O (a1 VoVl) Ao oAl Voo V) =

sl by o5 {1y -+ - lnm, }}
O to add a clause C to CNF ¢, we write ¢ U {C}

O to remove a clause C from CNF ¢, we write ¢\{C'}

JXU 18/48

Negation

B unary connective — (operator with exactly one argument)
B negating the truth value of its argument
B alternative notation: !¢, ¢, —, NOT'¢

truth qos Tb set
table: 11 0 view:
Example:

B If the atom “It rains.” is true then the negation “It does not rain.” is false.
B [f atom a is true then —a is false.

B [f formula ((a V) A y) is true then formula —((a V z) A y) is false.

B [f formula ((b — y) A 2) is true then formula —((b — y) A 2) is false.

JXU

19/48

Conjunction

B a conjunction is true iff both arguments are true
B alternative notation for ¢ A @&, i, 1), ¢ -1, pAN D)
B For (¢1 A... A ¢y) we also write A", &.

o Y| oNY
0 0 0
truth 0 1 0 set
table: 1 0 0 view:
1 1 1
Example:

B (a A —a) is always false.
B (T Aa)istrueifaistrue. (L A ¢) is always false.
B If (aVb)istrue and (—cV d) is true then (a vV b) A (—c V d) is true.

JXU 20/48

Disjunction

B a disjunction is true iff at least one of the arguments is true
B alternative notation for ¢ \ ¢: ¢[1, ¢ + ¢, POR
B For (¢1 V...V ¢,) we also write \/}"_, ¢;.

o Y| oVY
0 0 0
truth 0 1] set “
table: 1 0 1 view:
1 1 1
Example:

B (aV —a)is always true.
B (T Va)is always true. (L V a) is true if a is true.
B If (a — b) is true and (—c — d) then (a — b) V (—c — d) is true.

JXU 21/48

Implication

B an implication is true iff the first argument is false or both
arguments are true (Ex falsum quodlibet.)
W alternative notation: ¢ D v, ¢ IMPL ¢

¢ Y| o=
0 1
truth 0 1 1 s?t
table: 1 0 0 view:
1 1 1
Example:

W [f atom "lt rains." is true and atom "The street is wet." is true then the
statement "If it rains, the street is wet." is true.

B (L — a)and (a — a) are always true. T — ¢ is true if ¢ is true.

JXU 20/48

Equivalence

B true iff both subformulas have the same value
B alternative notation: ¢ =, ¢ =, p ~

¢ Y| oy
0 0 1
truth 0 1 0 s'et
table: 1 0 0 view:
1 1 1
Example:

false.

\.

B The formula a > a is always true.
B The formula a < b is true iff a is true and b is true or a is false and b is

B T < L is never true.

JXU

23/48

The Logic Connectives at a Glance

¢ | T L ¢ oAy ¢V =Y sy 0By oty oLy
0o 0|1 0 1 0 0 1 1 0 1 1
0 1|1 0 1 0 1 1 0 1 1 0
1 0/1 0 O 0 1 0 0 1 1 0
1 11 0 o0 1 1 1 1 0 0 0
Example:

¢ Y| 2(pA) VY (92 Y)A (Y)

00 0 1 1

0o 1 1 1 0

10 1 0 0

1 1 1 1 1

Observation: connectives can be expressed by other connectives.

JXU 24/48

Other Connectives

B there are 16 different functions for binary connectives

M sofar,we had A,V, <, —

B further connectives:
O ¢ + ¢ (also @, xor, antivalence)
O ¢ 14 (nand, Sheffer Stroke Function)
O ¢ | o (nor, Pierce Function)

R N
0 0| O 1 1
0 1 1 1 0
10| 1 1 0
1 1] 0 0 0

B nor and nand can express every other boolean function
(i.e., they are functional complete)
B often used for building digital circuits (like processors)

JXU 25/48

Propositional Formulas and Digital Circuits

andgate B nandgate g

LD o 2
D e P

Xor gate B not gate

JXU 26/48

Example of a Digital Circuit: Half Adder

- - O O&

Y
0
1
0
1

- O O Oln

S

0

1

1 . O—"A)D—@ s

0 .

From the truth table, we see

that ;D—@ ¢
ce TNy Yo

and

s rdy.

JXU 27/48

Different Notations

Verilog
operator logic circuits ~ C/C++/Java/C# VHDL Limboole
1 T 1 true 1 —

0 il 0 false 0 —
negation —¢ 6 0 o) not ¢)
conjunction ONY oY -1 P && Y ¢ and Y ¢ &Y
disjunction OV ¢+ oY ¢ or AR

exclusive or || ¢ <4 ¥ ODY o =1 & xor 1 _
implication || ¢ — 1) o DY - - ¢ ->1
equivalence || ¢ < ¥ b= ¢ == o xrnory P>
Exampl :

B (aV(bV-c) e (TA((a— b))V (eVaVvhb)))

B (a+(O+0))=c((adD=b)+(0+a+d))

B (alf(b][le)==(c&& ((tal[!b)[| (false |l a]|D)))

JXU

28/48

All 16 Binary Functions

| JUBISUOD

10

uoneolduwi

aouajeainba
pue
pueu

10X

Jou

0 JUBISU0D

0

1

0O 0 0 1

0

1

1

0 000 0O O OTPDO

1

=

<

0 0|0

0|0 0 O O
1

1

29/48

JXU

Assignment

B a variable can be assigned one of two values from the
two-valued domain B, where B = {1,0}

B the mapping v : P — B is called assignment, where P is
the set of atomic propositions

B we sometimes write an assignment v as set V' with
V CPU{~z|x € P} such that

OzeViffr(z) =1
O —zeViffr(z) =0

B for n variables, there are 2" assignments possible

B an assignment corresponds to one line in the truth table

JXU 30/48

Assignment: Example

r y z|(xVy A-z
0 0O 0
0 0 1 0
010 1
0o 1 1 0
1 00 1
1 0 1 0
110 1
1 1 1 0

B one assignment: v(z) =1,v(y) =0,v(z) =1
B alternative notation: V = {x, -, 2}
B observation: A variable assignment determines the truth

i/JaIue of the formulas containing these variables.
31/48

Semantics of Propositional Logic

Given assignment v : P — B, the interpretation [.], : L — B is
defined by:

m(7],=1,[L],=0

B if x € Pthen [z], = v(x)

W [, =1iff [g], =0

W oV, =1iff [¢], =1or[¢)], =1

JXU 32/48

Satisfying/Falsifying Assigments

B An assignment is called
O satisfying a formula ¢ iff [¢], = 1.
O falsifying a formula ¢ iff [¢], = 0.

B A satisfying assignment for ¢ is a model of ¢.
B A falsifying assignment for ¢ is a counter-model of ¢.

Example:

For formula ((z V y) A —z2),
B {z,y,z} is a counter-model,
B {z,y,—z}is a model.

JXU 33/48

Properties of Propositional Formulas (1/3)

B formula ¢ is satisfiable iff
there exists interpretation [.], with [¢], =1
check with limboole -s

B formula ¢ is valid iff
for all interpretations [.],, it holds that [¢], = 1
check with 1imboole
B formula ¢ is refutable iff
exists interpretation [.],, with [¢], =0
check with 1imboole
B formula ¢ is unsatisfiable iff
[¢], = O for all interpretations [.],
check with 1imboole -s

JXU 34/48

Properties of Propositional Formulas (2/3)

B a valid formula is called fautology

M an unsatisfiable formula is called contradiction

Example:

, . B o — b is satisfiable.
W T isvalid.

B | is unsatisfiable.
B (aV-b)A(-aVDd)is
refutable.

WMo~ —aisa
contradiction.

B (aV-b)A(-aVDd)is
satisfiable.

JXU 35/48

Properties of Propositional Formulas (3/3)

B A satisfiable formulais W A refutable formula is

O possibly valid O possibly satisfiable
O possibly refutable O possibly unsatisfiable
OO0 not unsatisfiable. O not valid.

B A valid formula is B An unsatisfiable formula is
O satisfiable O refutable
O not refutable O not valid
O not unsatisfiable. O not satisfiable.

Example:

A

B satisfiable, but not valid: a < b
B satisfiable and refutable: (a VvV b) A (ma V ¢)

B valid, not refutable T V (a A —a); not valid, refutable
(LVvb)

3
S J

431 v
|9/ 36/48

Further Connections between Formulas

B A formula ¢ is valid iff —¢ is unsatisfiable.
B A formula ¢ is satisfiable iff —¢ is not valid.
B The formulas ¢ and v are equivalent iff ¢ < v is valid.

B The formulas ¢ and v are equivalent iff —(¢ <> v) is
unsatisfiable.

B A formula ¢ is satisfiable iff ¢ & 1.

JXU 37/48

Simple Algorithm for Satisfiability Checking

1 Algorithm: evaluate

Data: formula ¢
Result: 1 iff ¢ is satisfiable

2 if ¢ contains a variable x then

else

© o N o u

1
12
13

14
15

JXU

pickv e {T, L}
/* replace x by truth constant v, evaluate resulting formula */

if evaluate(¢[x|v]) then return 7;
else return evaluate(¢[x[v]) ;

switch ¢ do
case T do return 7,
case | do return 0;
case —) do return ! evaluate(v)) /* true iff ¢ is false */ ;
case ¥’ A" do
‘ return evaluate(y)’) && evaluate(y)'’) /* true iff both +’ and +"" are

true */
case ¢’ vV ¢’ do
\ return evaluate(y)’) || evaluate(x)"’) /* true iff o’ or)"’ is true */

38/48

Semantic Equivalence

Two formula ¢ and « are semantic equivalent (written as
¢ < 1) iff forall interpretations [.],, it holds that [¢], = [¢],.

B & is a meta-symbol, i.e., it is not part of the language.

B natural language: if and only if (iff)

B ¢ < v iff p < ¢ isvalid, i.e., we can express semantics by
means of syntactics.

B If » and v are not equivalent, we write ¢ < .

Example:
BoV-aéb——-b B (aVb)A-(aVd) e L

BaoV-asbv-b Baeo (beo)e ((aed) e

JXU 39/48

Examples of Semantic Equivalences (1/2)

PANY S YPNP PV &PV commutativity
PN AY) & (pAY) Ay OV (V) (V) Vy associativity
PN (PVY) & ¢ GV (PAY) & ¢ absorption
PAPVY) S @AYV (EAY) | ¢V (P AY) S (@ViP)A (V) | distributivity

“(PNAY) & pV

(¢ V) & A

laws of De Morgan

e (@—=P)A (Y —9)

JXU

PP (PAY)V (mp A1)

synt. equivalence

40/48

Examples of Semantic Equivalences (2/2)

dVY e P | e p— ¢ | implications
NP L ¢V -p= T complement
A double negation
OANT & o oV Lo neutrality

¢VT & T dNL& L

-T& L LT

JXU

41/48

Logic Entailment

Let ¢1, ... ¢n, ¥ be propositional formulas. Then ¢4, ... ¢,
entail + (written as ¢1,...,0, E) iff [¢1], =
1,...[¢pn], = 1 implies that [¢], = 1.

Informal meaning: True premises derive a true conclusion.

B | is a meta-symbol, i.e., it is not part of the language.

B o,...00 E0Iff (01 Ao Ady) — isvalid, i.e., we can
express semantics by means of syntactics.

B If ¢1,... ¢, do not entail ¥, we write ¢1,... ¢, = .

Example:
Ba=aVd B=aV-a Baa—bED

zl, a,bl=anNb B EaN-a Bl=aN—a st

Satisfiability Equivalence

Two formulas ¢ and v are satisfiability-equivalent (written
as ¢ <gar 1) iff both formulas are satisfiable or both are
contradictory.

B Satisfiability-equivalent formulas are not necessarily
satisfied by the same assignments.

B Satisfiability equivalence is a weaker property than
semantic equivalence.

B Often sufficient for simplification rules: If the complicated
formula is satisfiable then also the simplified formula is
satisfiable.

JXU 43/48

Example: Satisfiability Equivalence

positive pure literal elimination rule:

If a variable x occurs in a formula but -z does not occur in the
formula, then x can be substituted by T. The resulting formula
is satisfiability-equivalent.

Example:

B rogar T,butz s T

B (aND)V(-cAa)<gar bV —e, but
(aNb)V (mcNa) bV e

JXU 44/48

Representing Functions as CNFs

B Problem: Given the truth table of a Boolean function ¢.
How is the function represented in propositional logic?

Solution (in CNF): a b clo¢ clauses
1. Represent each assignment g g ? (1) avbve
v where ¢ has value 0 as o 1 ol1
clause: 0 1 1[0/ av-bv-c
O If variable z is 1 in v, add 1 0 011
-z to clause. 1 0 1][0]| ~avbVv—c
O Ifvariable zisOinv,addz|{ 1 1 0| 0| mav-bVec
to clause. 11 1)1
(;3 =
2. Con.nect.all clauses by (@VBVE) A (@V —bv —c) A
conjunction. (maVbV=e)A(=aV-bVec)

JXU 45/42;

Representing Functions as DNFs

B Problem: Given the truth table of a Boolean function ¢.

How is the function represented in propositional logic?

.)] a b c| ¢ cubes
Solution (in DNF): o 0 o0l o
1. Represent each 0 0 1111l man-bre
assignment v wheregohas| o0 1 0|1 || —anbA-c
value 1 as cube: 01 1]0
O If variable z is 1 in v, 1.0 01 }an-bAr-c
add z to cube. 1.0 110
O Ifvariable zisOiny, | + 1 0|0
add -z to cube. T anbne
2. Connect all cubes by ¢ =
disjunction. (maA=bACc)V (maANbA—C)V
(an=bA-c)V(aANbAC)

JXU \

46/48

Functional Completeness

B In propositional logic there are
O 2 functions of arity 0 (T, L)
O 4 functions of arity 1 (e.g., not)
O 16 functions of arity 2 (e.g., and, or, ...)
O 22" functions of arity n.
B A function of arity n has 2" different combinations of
arguments (lines in the truth table).
B A functions maps its arguments either to 1 or 0.

A set of functions is called functional complete for propo-
sitional logic iff it is possible to express all other functions
of propositional logic with functions from this set.

{=, A}, {—, v}, {nand} are functional complete.

JXU 47/48

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one
of k colors, such that there is no edge (v, w) € E, with vertices v and w

colored in the same color.

Encoding:

1. Propositional variables: v; ... node
v e Vhascolorj(l<j<k)

2. each node has a color:

ACV v)

veV 1<j<k

3. each node has just one color:
—(vi ANvj)withv e V1 <i<j<k

4. neighbors have different colors:
—(vi Aw;) with (v,w) € E,1 <1<k

JXU

2-coloring of
({a, b, ¢}, {(a,b), (b, 0)})
1. ai,a2,b1,b2,c1,c2
2. a1 Vaz,b1V
ba,c1 V c2
3. —\(a1 N ag),—\(b1 A\
b2), ~(c1 A c2)
4. —(a1 Ab1), (a2 A
b2) =(b1 A
61), —\(b2 AN 62)

48/48

