VL LOGIK: GENERAL INTRODUCTION

WS 2016/2017 (342.208)

Armin Biere, FMV (biere@jku.at)
Martina Seidl, FMV (martina.seidl@jku.at)
Version 2016.1

Abstractions and Modelling

Definition (Model)

A *model* is a simplified reflection of a natural or artificial entity describing only those aspects of the "real" entity relevant for a specific purpose.

Examples for models:

■ geography: map

architecture: construction plan

■ informatics: almost everything (e.g., a software system)

A model is an abstraction hiding irrelevant aspects of a system. This allows to focus on the important things.

Modelling Languages (1/3)

■ Purposes of models:□ construction of new system□ analysis of complex system	
■ Natural Language is	Example
□ universal	We saw the man with the telescope.
□ expressive	■ Did the man have a telescope?
but also	■ Did we have a telescope?
complex, ambiguous, fuzzy.	
■ Modelling languages have b	een introduced which are
artificially constructed	
restricted in expressivene	SS
often specific to a domain	
 formally defined with cond 	sise semantics

Modelling Languages (2/3)

Examples of modelling languages in computer science:

State Machines

CSP

Road = car.up.ccross.down.Road

Rail = train.darkgreen.tcross.red.Rail

Signal = darkgreen.red.Signal + up.down.Signal

 $Crossing \quad = \quad (Road \mid\mid Rail \mid\mid Signal)$

Petri Net

Circuit

Modelling Languages (3/3)

Modelling languages are distinguishable (amongst other properties) w.r.t.

- universality and expressiveness
- degree of formalization
- representation (graphical, textual)

Definition (Formal Modelling)

Translation of a (possibly ambiguous) specification to an unambiguous specification in a formal language

Languages of logic provide a very powerful tool for formal modeling.

Defining a Language: Syntax

- what do expressions (words, sentences) of a language look like?
 - sequences of symbols forming words
 - □ rules for composing sentences (grammar)
 - checked by parser
 - □ sometimes multiple (equivalent) representations
 - different goals (user-friendliness, processability)

Example

Definition of natural numbers:

- 0 is a natural number.
- For every natural number n, there is a natural number s(n).

Some words: $0, s(0), s(s(0)), \ldots$

Defining a Language: Syntax

- what do expressions mean?
 - ☐ meaning of the words
 - ☐ meaning of combinations of words (sentences)
 - ☐ logic-based languages have a concise semantics

Example

Interpretation as natural numbers:

- 0 is interpreted as zero
- \blacksquare s(0) is interpreted as one
- \blacksquare s(s(0)) is interpreted as *two*
- **.**..

Backus-Naur Form (BNF)

- notation technique for describing the syntax of a language
- elements:
 - □ non-terminal symbols (variables): enclosed in brackets ⟨⟩
 - ☐ ::= indicates the definition of a non-terminal symbol
 - ☐ the symbol | means "or"
 - □ all other symbols stand for themselves (sometimes they are quoted, e.g., "->")

Example

Definition of the language of *decimal numbers* in BNF:

```
 \langle number \rangle ::= \langle integer \rangle \text{ "." } \langle integer \rangle 
 \langle integer \rangle ::= \langle digit \rangle \mid \langle digit \rangle \langle integer \rangle 
 \langle digit \rangle ::= 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 0
```


Logic-Based Languages (Logics)

■ A <i>logic</i> consists of	
$\ \square$ a set of symbols (like $\lor, \land, \neg, \top, \bot, \forall, \exists \ldots$)	
\square a set of variables (like x, y, z, \ldots)	
 concise syntax: well-formedness of expressions 	
□ concise semantics: meaning of expressions	
■ Logics support <i>reasoning</i> for	
□ derivation of "new" knowledge	
 proving the truth/falsity of a statement (satisfiability 	
checking)	
■ Different logics <i>differ</i> in their	
☐ truth values: binary (true, false), multi-valued (true, false	,
unknown), fuzzy (between 0 and 1, e.g., $[0,1]$ as subset	of
the real numbers)	
expressiveness (what can be formulated in the logic?)	
complexity (how expensive is reasoning?)	
⊻ U	8/19

Example: Party Planning

We want to plan a party.

Unfortunately, the selection of the guests is not straight forward.

We have to consider the following rules.

- If two people are married, we have to invite them both or none of them. Alice is married to Bob and Cecile is married to David.
- If we invite Alice then we also have to invite Cecile.Cecile does not care if we invite Alice but not her.
- 3. David and Eva can't stand each other, so it is not possible to invite both.
- 4. We want to invite Bob and Fred.

Question: Can we find a guest list?

Syntax of Propositional Logic

In BNF-like form:

- \blacksquare \top is the truth constant which is always true
- lacksquare lacksquare is the truth constant which is always false
- a propositional variable can take the values true and false
- ¬ is the negation
- ∧ is the conjunction (logical and)
- ∨ is the disjunction (logical or)
- \blacksquare \rightarrow is the implication
- \blacksquare \leftrightarrow is the equivalence

Party Planning with Propositional Logic

- propositional variables: inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva, inviteFred
- constraints:
 - invite married: inviteAlice ↔ inviteBob, inviteCecile ↔ inviteDavid
 - 2. if Alice then Cecile: inviteAlice → inviteCecile
 - 3. either David or Eva: ¬ (inviteEva ↔ inviteDavid)
 - invite Bob and Fred: inviteBob ∧ inviteFred
- encoding in propositional logic:

```
(inviteAlice \leftrightarrow inviteBob) \land (inviteCecile \leftrightarrow inviteDavid) \land (inviteAlice \rightarrow inviteCecile) \land \neg (inviteEva \leftrightarrow inviteDavid) \land inviteBob \land inviteFred
```


Syntax of First-Order Logic: Terms

In BNF-like form:

```
\langle \mathit{term} \rangle \; ::= \; \langle \mathit{constant} \rangle \; \mid \; \langle \mathit{variable} \rangle \; \mid \; \langle \mathit{fun\_sym} \rangle \; \text{`('} \; \langle \mathit{term} \rangle \; \; \text{(','} \; \langle \mathit{term} \rangle \; \; )* \; \text{')'}
```

- function symbols ($\langle fun_sym \rangle$) have an arity (number of arguments).
- \blacksquare (',' $\langle term \rangle$)* means zero or more repetitions of ", $\langle term \rangle$ ".

Example

■ Let s be a function symbol with arity 1 and y a variable. Then s(y) is a term.

Syntax of First-Order Logic: Formulas

In BNF-like form:

```
 \langle formula \rangle ::= \top \mid \bot \mid \langle atomic\_f \rangle \mid \langle connective\_f \rangle \mid \langle quantifier\_f \rangle 
 \langle atomic\_f \rangle ::= \langle pred\_sym \rangle \text{ ('} \langle term \rangle \text{ ('}, ' \langle term \rangle) * ')' 
 \langle connective\_f \rangle ::= \langle conn1 \rangle \langle formula \rangle \mid \langle formula \rangle \langle conn2 \rangle \langle formula \rangle 
 \langle conn1 \rangle ::= \neg 
 \langle conn2 \rangle ::= \wedge \mid \vee \mid \rightarrow \mid \leftrightarrow 
 \langle quantifier\_f \rangle ::= \langle quantifier \rangle \langle variable \rangle \text{ ':'} \langle formula \rangle 
 \langle quantifier \rangle ::= \forall \mid \exists
```

- ∀ is the *universal quantifier*
- ∃ is the *existential quantifier*
 - $\square \exists x : p(x)$ is reads as "there is a value of x such that the

13/19

JYU unary predicate p is true."

Party Planning with First-Order Logic

- objects (constants): alice, bob, cecile, david, eva, fred
 relations (predicates): married/2, invited/1
 background knowledge: married(alice,bob),
- background knowledge: married(alice,bob), married(cecile,david)
- constraints:

invited(fred)

- 1. $\forall X, Y \text{ (married(X,Y)} \rightarrow \text{ (invited(X)} \leftrightarrow \text{invited(Y)})$
- 2. if Alice then Cecile: invited(alice) → invited(cecile)
- 3. either David or Eva: \neg (invited(eva) \leftrightarrow invited(david))
- 4. invite Bob and Fred: invited(bob) ∧ invited(fred)
- encoding in first-order logic:

```
\forall X,Y \ (\mathsf{married}(\mathsf{X},\mathsf{Y}) \to (\mathsf{invited}(\mathsf{X}) \leftrightarrow \mathsf{invited}(\mathsf{Y})) \land \mathsf{invited}(\mathsf{alice}) \to \mathsf{invited}(\mathsf{cecile}) \land \neg \ (\mathsf{invited}(\mathsf{eva}) \leftrightarrow \mathsf{invited}(\mathsf{david})) \land \mathsf{invited}(\mathsf{bob}) \land
```


Automated Reasoning and Inferences

- Logical languages allow the inference of new knowledge ("reasoning").
- For reasoning, a logic provides various sets of *rules* (calculi).
- Reasoning is often based on certain syntactical patterns.

```
Example: (modus ponens)
x holds.
If x holds, then also y holds.
y holds.
```


Some Remarks on Inferences (1/2)

A system is inconsistent, if we can infer that a statement holds and that a statement does not hold at the same time.

Example

Assume we have modelled the following system

- A comes to the party.
- B comes to the party.
- If A comes to the party, then B does not come to the party.

With the modus ponens, we can infer that B does not come to the party.

So, we have some inconsistency in our party model.

Some Remarks on Inferences (2/2)

■ Sometimes we cannot infer anything.

Example

Assume we have modelled the following system:

- If A comes to the party, then B comes to the party.
- C comes to the party.

Then we cannot infer anything.

Logic in Practice

- hardware and software industry:
 - computer-aided verification
 - formal specification
- programming: basis for declarative programming language like Prolog
- artificial intelligence: automated reasoning (e.g., planning, scheduling)
- mathematics: reasoning about systems, mechanical proofs

Logics in this Lectures

In this lecture, we consider different logic-based languages:

propositional logic (SAT)
☐ simple language: only atoms and connectives
☐ low expressiveness, low complexity
□ very successful in industry (e.g., verification)
first-order logic (predicate logic)
☐ rich language: predicates, functions, terms, quantifiers
☐ great power of expressiveness, high complexity
☐ many applications in mathematics and verification
satisfiability modulo theories (SMT)
☐ customizable language: user decides
□ as much expressiveness as required
as much complexity as necessary
 very popular and successful in industry

