PROPOSITIONAL LOGIC

VL Logik: WS 2017/18

(Version 2017.1)

Martina Seidl (martina.seidl@jku.at), Armin Biere (biere@jku.at) Institut für Formale Modelle und Verifikation

- 2. We chose two colors, for example purple and green.
 - One color is the winning color, for example purple.
 - Then the non-winning color is green.

- 2. We chose two colors, for example purple and green.
 - □ One color is the winning color, for example purple.
 - Then the non-winning color is green.
- Now we can play: assign the two colors to each symbol such that its underlined and non-underlined occurrences have a different color.

- 2. We chose two colors, for example purple and green.
 - One color is the winning color, for example purple.
 - Then the non-winning color is green.
- Now we can play: assign the two colors to each symbol such that its underlined and non-underlined occurrences have a different color.
- 4. If each box contains a symbol in purple you won.

■ Wrong coloring!

Wrong coloring!

Again a wrong coloring!

Wrong coloring!

Again a wrong coloring!

Lost!

■ Wrong coloring!

Again a wrong coloring!

Lost!

■ Won!

Some Terminology

- From now on, we call a box a **clause**.
- We call a clause with at least one purple symbol satisfied.
- We call a clause with all symbols in green falsified.
- We call a clause with green and uncolored symbols undecided.

 \Rightarrow The game is won if all clauses are satisfied.

- 1 symbol, 2 possibilities
 - 1. ♥
 - 2. 🖤

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
 - 1. ♥, ♦
 - 2. ♥, ♦
 - 3. ♥, ♦
 - 4. ♥, ♦

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
 - 1. ♥, ♦, ■
 - 2. ♥, ♦, ■
 - 3. ♥, ♦, ■
 - 4. ♥, ♦, ■
 - 5. ♥, ♦, ■
 - 6. ♥, ♦, ■
 - 7. ♥, ♦, ■
 - 8. ♥, ♦, ■

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
- 4 symbols, 16 possibilities

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
- 4 symbols, 16 possibilities
- 5 symbols, 32 possibilities

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
- 4 symbols, 16 possibilities
- 5 symbols, 32 possibilities
- 6 symbols, 64 possibilities

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
- 4 symbols, 16 possibilities
- 5 symbols, 32 possibilities
- 6 symbols, 64 possibilities
- **...**

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
- 4 symbols, 16 possibilities
- 5 symbols, 32 possibilities
- 6 symbols, 64 possibilities
- **...**
- 20 symbols, 1.048.576 possibilities

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
- 4 symbols, 16 possibilities
- 5 symbols, 32 possibilities
- 6 symbols, 64 possibilities
- **...**
- 20 symbols, 1.048.576 possibilities
- 30 symbols, 1.073.741.824 possibilities

- 1 symbol, 2 possibilities
- 2 symbols, 4 possibilities
- 3 symbols, 8 possibilities
- 4 symbols, 16 possibilities
- 5 symbols, 32 possibilities
- 6 symbols, 64 possibilities
- ..
- 20 symbols, 1.048.576 possibilities
- 30 symbols, 1.073.741.824 possibilities

n symbols

 \Rightarrow

 2^n possibilities

Guess & Check Problems

observation in our BOX game:

- finding a solution is hard
 - \square 2ⁿ solution candidates have to be considered
 - a good oracle is needed for guessing
- verifying a given candidate solution is easy
 - check that each box contains a purple symbol

Guess & Check Problems

observation in our BOX game:

- finding a solution is hard
 - \square 2ⁿ solution candidates have to be considered
 - a good oracle is needed for guessing
- verifying a given candidate solution is easy
 - check that each box contains a purple symbol

fundamental question in computer science:

The P = NP Question

Is searching for a solution harder than verifying a solution? (unfortunately, the answer is not known)

Famous Guess & Check Problem: SAT

SAT is the decision problem of propositional logic:

Given a Boolean formula, for example

$$(\neg x \lor \neg y) \land (x \lor \neg y) \land (\neg x \lor z) \land (y \lor \neg z).$$

- Question: is the formula satisfiable?
 I.e., is there an assignment of truth values 1 (true), 0 (false) to the variables x, y, z such that
 - $\forall v \in \{x, y, z\}^1$: the truth value of v and $\neg v$ is different
 - each clause (...) contains at least one true literal²

²literals of the formula: $x, \neg x, y, \neg y, z, \neg z$

¹forall variables it holds that ...

Famous Guess & Check Problem: SAT

SAT is the decision problem of propositional logic:

Given a Boolean formula, for example

$$(\neg x \lor \neg y) \land (x \lor \neg y) \land (\neg x \lor z) \land (y \lor \neg z).$$

- Question: is the formula satisfiable?
 I.e., is there an assignment of truth values 1 (true), 0 (false) to the variables x, y, z such that
 - $\forall v \in \{x, y, z\}^1$: the truth value of v and $\neg v$ is different
 - each clause (...) contains at least one true literal²

Cook-Levin Theorem [71]: SAT is NP-complete Searching is as easy as checking if and only if it is for SAT.

²literals of the formula: $x, \neg x, y, \neg y, z, \neg z$

¹forall variables it holds that ...

Relating BOX and SAT

There is a correspondence between BOX and SAT, for example between

and

$$(\neg x \lor \neg y) \land (x \lor \neg y) \land (\neg x \lor z) \land (y \lor \neg z)$$
:

Relating BOX and SAT

There is a correspondence between BOX and SAT, for example between

and

$$(\neg x \lor \neg y) \land (x \lor \neg y) \land (\neg x \lor z) \land (y \lor \neg z) :$$

- $x \cong \emptyset$ and $\neg x \cong \emptyset$
- $y \cong \Diamond$ and $\neg y \cong \Diamond$
- $z \cong \Box$ and $\neg z \cong \Box$
- purple/green coloring ≅ assignment to true/false (1/0)

Relating BOX and SAT

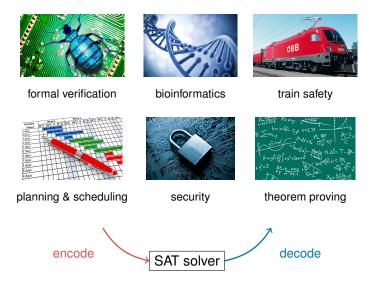
There is a correspondence between BOX and SAT, for example between

and

$$(\neg x \lor \neg y) \land (x \lor \neg y) \land (\neg x \lor z) \land (y \lor \neg z) :$$

- $x \cong \emptyset$ and $\neg x \cong \emptyset$
- $y \cong \Diamond$ and $\neg y \cong \Diamond$
- $z \cong \Box$ and $\neg z \cong \Box$
- purple/green coloring ≅ assignment to true/false (1/0)
- \Rightarrow if we can solve SAT, we can solve BOX (and vice versa)

Practical Applications of SAT Solving



Logics in this Lectures

In this lecture, we consider different logic-based languages:

- propositional logic (SAT)
 - simple language: only atoms and connectives
 - □ low expressiveness, low complexity
 - very successful in industry (e.g., verification)
- first-order logic (predicate logic)
 - rich language: predicates, functions, terms, quantifiers
 - great power of expressiveness, high complexity
 - many applications in mathematics and verification
- satisfiability modulo theories (SMT)
 - customizable language: user decides
 - as much expressiveness as required as much complexity as necessary
 - very popular and successful in industry

Logic-Based Languages (Logics)

- A logic consists of
 - \square a set of symbols (like \vee , \wedge , \neg , \top , \bot , \forall , \exists ...)
 - \square a set of variables (like x, y, z, ...)
 - concise syntax: well-formedness of expressions
 - concise semantics: meaning of expressions
- Logics support reasoning for
 - derivation of "new" knowledge
 - proving the truth/falsity of a statement (satisfiability checking)
- Different logics differ in their
 - truth values: binary (true, false), multi-valued (true, false, unknown), fuzzy (between 0 and 1, e.g., [0, 1] as subset of the real numbers)
 - expressiveness (what can be formulated in the logic?)
 - complexity (how expensive is reasoning?)

PROPOSITIONAL LOGIC

Propositions

a proposition is an atomic statement that is either true or false

example:

- Alice comes to the party.
- It rains.

with connectives, propositions can be combined

example:

- Alice comes to the party, Bob as well, but not Cecile.
- If it rains, the street is wet.

Propositional Logic

- two truth values (Boolean domain): true/false, verum/falsum, on/off, 1/0
- language elements
 - atomic propositions (atoms, variables)
 - · no internal structure
 - · either true or false
 - □ logic connectives: not (\neg) , and (\land) , or (\lor) , ...
 - operators for construction of composite propositions
 - · concise meaning
 - argument(s) and return value from Boolean domain
 - parenthesis

```
example: formula of propositional logic: (\neg t \lor s) \land (t \lor s) \land (\neg t \lor \neg s) atoms: t, s, connectives: \neg, \lor, \land, parenthesis for structuring the expression
```


Background

- historical origins: ancient Greeks
- in philosophy, mathematics, and computer science
- two very basic principles:
 - Law of Excluded Middle:a proposition is true or its negation is true
 - Law of Contradiction:
 no expression is both true and false at the same time
- very simple language
 - no objects, no arguments to propositions
 - no functions, no quantifiers
- solving is <u>easy</u> (relative to other logics)
- many applications in industry

Syntax: Structure of Propositional Formulas

we build a propositional formula using the following components:

literals:

- \square variables x, y, z, \dots
- \square negated variables $\neg x, \neg y, \neg z, \dots$
- \square truth constants: \top (verum) and \bot (falsum)
- □ negated truth constants: ¬⊤ and ¬⊥
- clauses: disjunction (∨) of literals
 - $\Box x \lor y$
 - $\Box x \lor y \lor \neg z$
 - □ z.
 - □ T

Syntax: Structure of Propositional Formulas

A propositional formula is a conjunction (\land) of clauses.

examples of formulas:

- \blacksquare \top \blacksquare $x \land y \land z$
 - \blacksquare $(\neg x \lor y \lor \neg z) \land z$

Remark: For the moment, we consider formulas of a restricted structure called CNF (e.g., we do not consider formulas like $(x \land y) \lor (\neg x \land z)$). Any propositional formula can be translated into this structure. We will relax this restriction later.

Conventions

we use the following conventions unless stated otherwise:

- a, b, c, x, y, z denote variables and l, k denote literals
- ϕ, ψ, γ denote arbitrary formulas
- C, D denote clauses
- clauses are also written as sets

 - \square to add a literal l to clause C, we write $C \cup \{l\}$
 - \square to remove a literal *l* from clause *C*, we write $C \setminus \{l\}$
- formulas in CNF are also written as sets of sets

$$\square ((l_{11} \vee \ldots \vee l_{1m_1}) \wedge \ldots \wedge (l_{n1} \vee \ldots \vee l_{nm_n})) = \{\{l_{11}, \ldots l_{1m_1}\}, \ldots, \{l_{n1}, \ldots l_{nm_n}\}\}$$

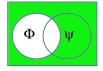
- □ to add a clause *C* to CNF ϕ , we write $\phi \cup \{C\}$
- \square to remove a clause *C* from CNF ϕ , we write $\phi \setminus \{C\}$

Negation

- unary connective ¬ (operator with exactly one argument)
- negating the truth value of its argument
- alternative notation: $!\phi, \overline{\phi}, -\phi, NOT\phi$

	ϕ	$\neg \phi$
truth table:	0	1
	1	0

<u>set</u> <u>view</u>:



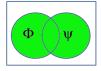
- If the atom "It rains." is true then the negation "It does not rain." is false.
- If the propositional variable a is true then $\neg a$ is false.
- If the propositional variable a is false then $\neg a$ is true.

Disjunction

- a disjunction is true iff at least one of the arguments is true
- alternative notation for $\phi \lor \psi$: $\phi | \psi, \phi + \psi, \phi OR \psi$
- For $(\phi_1 \vee ... \vee \phi_n)$ we also write $\bigvee_{i=1}^n \phi_i$.

	ϕ	ψ	$\phi \lor \psi$
truth table:	0	0	0
	0	1	1
	1	0	1
	1	1	1

<u>set</u> <u>view</u>:



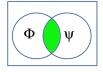
- $(a \lor \neg a)$ is always true.
- \blacksquare $(\top \lor a)$ is always true. $(\bot \lor a)$ is true if a is true.

Conjunction

- a conjunction is true iff both arguments are true
- **alternative notation for** $\phi \wedge \psi$: $\phi \& \psi$, $\phi \psi$, $\phi * \psi$, $\phi \cdot \psi$, $\phi AND\psi$
- For $(\phi_1 \wedge \ldots \wedge \phi_n)$ we also write $\bigwedge_{i=1}^n \phi_i$.

	ϕ	ψ	$\phi \wedge \psi$
	0	0	0
truth table:	0	1	0
	1	0	0
	1	1	1

set view:



- $(a \land \neg a)$ is always false.
- $\top (\top \wedge a)$ is true if a is true. $(\bot \wedge \phi)$ is always false.
- If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.

Properties of Connectives

- rules of precedence:
 - □ ¬ binds stronger than ∧
 - □ ∧ binds stronger than ∨

example

- $\neg a \lor b \land \neg c \lor d$ is the same as $(\neg a) \lor (b \land (\neg c)) \lor d$, but not $((\neg a) \lor b) \land ((\neg c) \lor d)$
- ⇒ put clauses into parentheses!
- associativity:
 - □ ∧ is associative and commutative
 - □ ∨ is associative and commutative

- \Box $(a \land b) \land \neg c$ is the same as $a \land (b \land \neg c)$
- \Box $(a \lor b) \lor \neg c$ is the same as $a \lor (b \lor \neg c)$

Assignment

- **a** variable can be assigned one of two values from the two-valued domain \mathbb{B} , where $\mathbb{B} = \{1, 0\}$
- the mapping $\nu : \mathcal{P} \to \mathbb{B}$ is called <u>assignment</u>, where \mathcal{P} is the set of atomic propositions
- we sometimes write an assignment ν as set V with $V \subseteq \mathcal{P} \cup \{\neg x | x \in \mathcal{P}\}$ such that
 - \square $x \in V$ iff v(x) = 1
 - $\neg x \in V \text{ iff } v(x) = \mathbf{0}$
- \blacksquare for *n* variables, there are 2^n assignments possible
- an assignment corresponds to one line in the truth table

Assignment: Example

x	у	z	$x \lor y$	$\neg z$	$(x \lor y) \land \neg z$
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

- one assignment: $v(x) = \mathbf{1}, v(y) = \mathbf{0}, v(z) = \mathbf{1}$
- alternative notation: $V = \{x, \neg y, z\}$
- observation: A variable assignment determines the truth value of the formulas containing these variables.

Semantics of Propositional Logic

Let \mathcal{P} be the set of atomic propositions (variables) and \mathcal{L} be the set of all propositional formulas over \mathcal{P} that are syntactically correct (i.e., all possible conjunctions of clauses over \mathcal{P}).

Given assignment an $\nu: \mathcal{P} \to \mathbb{B}$, the interpretation $[.]_{\nu}: \mathcal{L} \to \mathbb{B}$ is defined by:

- $[\top]_{\nu} = 1, [\bot]_{\nu} = 0$
- if $x \in \mathcal{P}$ then $[x]_{\nu} = \nu(x)$
- $[\phi \lor \psi]_{\nu} = \mathbf{1} \text{ iff } [\phi]_{\nu} = \mathbf{1} \text{ or } [\psi]_{\nu} = \mathbf{1}$
- $[\phi \wedge \psi]_{\nu} = 1$ iff $[\phi]_{\nu} = 1$ and $[\psi]_{\nu} = 1$

Satisfying/Falsifying Assignments

- an assignment is called
 - \square satisfying a formula ϕ iff $[\phi]_{\nu} = \mathbf{1}$
 - □ falsifying a formula ϕ iff $[\phi]_{\nu} = \mathbf{0}$
- \blacksquare a satisfying assignment for ϕ is a model of ϕ
- **a** a falsifying assignment for ϕ is a <u>counter-model</u> of ϕ

example:

For formula $((x \lor y) \land \neg z)$,

- \blacksquare {x, y, z} is a counter-model,
- \blacksquare { $x, y, \neg z$ } is a model.

SAT-Solver Limboole

- available at http://fmv.jku.at/limboole
- input:³
 - □ variables are strings over letters, digits and _ . [] \$ @
 - □ negation symbol ¬ is !
 - □ disjunction symbol ∨ is |
 - □ conjunction symbol ∧ is &

```
(a \lor b \lor \neg c) \land (\neg a \lor b) \land c is represented as (a \mid b \mid !c) \& (!a \mid b) \& c
```

³For now, we will only use subset of the language supported by Limboole.

Properties of Propositional Formulas (1/2)

- formula ϕ is <u>satisfiable</u> iff there exists interpretation $[.]_{\nu}$ with $[\phi]_{\nu} = \mathbf{1}$ check with <u>limboole</u> -s
- formula ϕ is <u>valid</u> iff for all interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu} = \mathbf{1}$ check with limboole
- formula ϕ is <u>refutable</u> iff exists interpretation $[.]_v$ with $[\phi]_v = \mathbf{0}$ check with limboole
- formula ϕ is <u>unsatisfiable</u> iff $[\phi]_{\nu} = \mathbf{0}$ for all interpretations $[.]_{\nu}$ check with limboole -s

Properties of Propositional Formulas (2/2)

- a valid formula is called tautology
- an unsatisfiable formula is called contradiction

- ⊤ is valid.
- \blacksquare $a \lor \neg a$ is a tautology.
- $(a \lor \neg b) \land (\neg a \lor b)$ is refutable.

- ⊥ is unsatisfiable.
- \blacksquare $a \land \neg a$ is a contradiction.
- $(a \lor \neg b) \land (\neg a \lor b)$ is satisfiable.

SAT: The Boolean Satisfiability Problem

Given a propositional formula ϕ . Is there an assignment that satisfies ϕ ?

different formulation: can we find an assignment such that each clause contains at least one true literal?

Encoding the k-Coloring Problem

Given graph (V, E) with vertices V and edges E. Color each node with one of k colors, such that there is no edge $(v, w) \in E$, with vertices v and w colored in the same color.

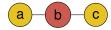
encoding:

- 1. propositional variables: v_j ... node $v \in V$ has color j $(1 \le j \le k)$
- 2. each node has a color:

$$\bigwedge_{v \in V} (\bigvee_{1 \le j \le k} v_j)$$

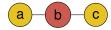
- 3. each node has just one color: $(\neg v_i \lor \neg v_j)$ with $v \in V$, $1 \le i < j \le k$
- 4. neighbors have different colors: $(\neg v_i \lor \neg w_i)$ with $(v, w) \in E, 1 \le i \le k$

<u>task</u>: find 2-coloring of graph $(\{a, b, c\}, \{(a, b), (b, c)\})$ with SAT possible solution:



encoding in SAT:

<u>task</u>: find 2-coloring of graph $(\{a, b, c\}, \{(a, b), (b, c)\})$ with SAT possible solution:



encoding in SAT:

 \blacksquare variables: $a_1, a_2, b_1, b_2, c_1, c_2$

<u>task</u>: find 2-coloring of graph $(\{a, b, c\}, \{(a, b), (b, c)\})$ with SAT possible solution:

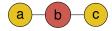


encoding in SAT:

- \blacksquare variables: $a_1, a_2, b_1, b_2, c_1, c_2$
- clauses:
 - 1. each node has a color: $(a_1 \lor a_2), (b_1 \lor b_2), (c_1 \lor c_2)$
 - 2. no node has two colors: $(\neg a_1 \lor \neg a_2), (\neg b_1 \lor \neg b_2), (\neg c_1 \lor \neg c_2)$
 - 3. connected nodes have a different color:

$$(\neg a_1 \lor \neg b_1), (\neg a_2 \lor \neg b_2), (\neg b_1 \lor \neg c_1), (\neg b_2 \lor \neg c_2)$$

<u>task</u>: find 2-coloring of graph $(\{a, b, c\}, \{(a, b), (b, c)\})$ with SAT possible solution:



encoding in SAT:

- \blacksquare variables: $a_1, a_2, b_1, b_2, c_1, c_2$
- clauses:
 - 1. each node has a color: $(a_1 \lor a_2), (b_1 \lor b_2), (c_1 \lor c_2)$
 - 2. no node has two colors: $(\neg a_1 \lor \neg a_2), (\neg b_1 \lor \neg b_2), (\neg c_1 \lor \neg c_2)$
 - 3. connected nodes have a different color:

$$(\neg a_1 \lor \neg b_1), (\neg a_2 \lor \neg b_2), (\neg b_1 \lor \neg c_1), (\neg b_2 \lor \neg c_2)$$

full formula:

$$(a_1 \lor a_2) \land (b_1 \lor b_2) \land (c_1 \lor c_2) \land (\neg a_1 \lor \neg a_2) \land (\neg b_1 \lor \neg b_2) \land (\neg c_1 \lor \neg c_2) \land (\neg a_1 \lor \neg b_1) \land (\neg a_2 \lor \neg b_2) \land (\neg b_1 \lor \neg c_1) \land (\neg b_2 \lor \neg c_2)$$

