TRANSFORMATION TO CNF

VL Logik: WS 2017/18

(Version 2017.0)

Martina Seidl (martina.seidl@jku.at), Armin Biere (biere@jku.at) Institut für Formale Modelle und Verifikation

Transformation to Conjunctive Normal Form 1

Approach 1: Transformation by "multiplication"

- 1. Remove \leftrightarrow , \rightarrow , \oplus as follows:

 - $\square \quad \phi \to \psi \Leftrightarrow \neg \phi \lor \psi,$
 - \square $\phi \oplus \psi \Leftrightarrow (\phi \lor \psi) \land (\neg \phi \lor \neg \psi)$
- 2. Transform formula to negation normal form (NNF) by
 - application of laws of De Morgan
 - elimination of double negation
- 3. Transform formula to CNF by laws of distributivity

Example: Transformation to CNF 1

Transformation of $\neg(a \leftrightarrow b) \rightarrow (\neg(c \land d) \land e)$ to an equivalent formula in CNF by approach 1

1. a) remove equivalences:

$$\Leftrightarrow \neg((a \to b) \land (b \to a)) \to (\neg(c \land d) \land e)$$

b) remove implications:

$$\Leftrightarrow \neg \neg ((\neg a \lor b) \land (\neg b \lor a)) \lor (\neg (c \land d) \land e)$$

- 2. NNF: $\Leftrightarrow ((\neg a \lor b) \land (\neg b \lor a)) \lor ((\neg c \lor \neg d) \land e)$
- 3. $\Leftrightarrow ((\neg a \lor b) \lor ((\neg c \lor \neg d) \land e))) \land ((\neg b \lor a) \lor ((\neg c \lor \neg d) \land e)))$ $\Leftrightarrow (\neg a \lor b \lor \neg c \lor \neg d) \land (\neg a \lor b \lor e) \land (\neg b \lor a \lor \neg c \lor \neg d) \land (\neg b \lor a \lor e)$

Transformation to Conjunctive Normal Form 2

Approach 2: Transformation by introducing labels for subformulas

Given formula ϕ . The following approach transforms ϕ to an equi-satisfiable formula in CNF.

- 1. Introduce new label v_{ψ} for each subformula ψ that is not a literal
- 2. Collect all definitions $l_{\psi} \leftrightarrow \psi'$ in a big conjunction Φ' (ψ' is obtained from ψ by replacing its immediate subformulas by the respective labels)
- 3. Transform Φ' to CNF Φ by approach 1 (no exponential blowup!)

 $(\Phi \wedge l_{\phi})$ and ϕ are equi-satisfiable

Example: Transformation to CNF 2

Transform $\phi := \neg(a \leftrightarrow b) \rightarrow (\neg(c \land d) \land e)$ to an equi-satisfiable formula in CNF

definitions Φ'	clauses Φ
$v_1 \leftrightarrow (a \leftrightarrow b)$	$(\bar{v}_1 \lor \bar{a} \lor b), (\bar{v}_1 \lor a \lor \bar{b}), (v_1 \lor \bar{a} \lor \bar{b}), (v_1 \lor a \lor b)$
$v_2 \leftrightarrow \neg v_1$	$(v_1 \vee v_2), (\bar{v}_1 \vee \bar{v}_2)$
$v_3 \leftrightarrow (c \land d)$	$(\bar{v}_3 \lor c), (\bar{v}_3 \lor d), (v_3 \lor \bar{c} \lor \bar{d})$
$v_4 \leftrightarrow \neg v_3$	$(v_3 \vee v_4), (\bar{v}_3 \vee \bar{v}_4)$
$v_5 \leftrightarrow (v_4 \land e)$	$(\bar{v}_5 \vee v_4), (\bar{v}_5 \vee e), (v_5 \vee \bar{v}_4 \vee \bar{e})$
$v_6 \leftrightarrow (v_2 \rightarrow v_5)$	$(\bar{v}_6 \lor \bar{v}_2 \lor v_5), (v_2 \lor v_6), (\bar{v}_5 \lor v_6)$

 $(\Phi \wedge v_6)$ and ϕ are equi-satisfiable.

Some Remarks on Normal Forms

- Approach 1 is exponential in the worst case (e.g., transform $(a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee \cdots \vee (a_n \wedge b_n)$ to CNF).
- Approach 2 is polynomial
 - Basic idea: introduce labels for subformulas.
 - □ Also works for formulas with sharing (circuits).
 - Also known as "Tseitin Encoding".
- CNF is usually not easier to solve, but easier to handle:
 - compact data structures: a CNF is simply a list of lists of literals.
- CNF very popular in practice: standard input format DIMACS
- To solve satisfiability of CNF, there are many optimization techniques and dedicated algorithms.

