
LOGIC
PROPOSITIONAL REASONING
WS 2017/2018 (342.208)

Armin Biere biere@jku.at
Martina Seidl martina.seidl@jku.at

Institute for Formal Models and Verification
Johannes Kepler Universität Linz

Version 2017.3

Satisfiability Checking

Definition (Satisfiability Problem of Propositional Logic (SAT))

Given a formula φ, is there an assignment ν such that [φ]ν = 1?

� oldest NP-complete problem (see next slides)

� checking a solution (assignment satisfies formula) is easy (polynomial effort)
� finding a solution is difficult (probably exponential in the worst case)

� many practical applications (used in industry)

� efficient SAT solvers (solving tools) are available

� other problems can be translated to SAT:

problem formulation in propositional logic
φ is valid ¬φ is unsatisfiable
φ is refutable to ¬φ is satisfiable
φ⇔ ψ to ¬(φ↔ ψ) is unsatisfiable
φ1, . . . , φn |= ψ φ1 ∧ . . . ∧ φn ∧ ¬ψ is unsatisfiable

1/24

A Glimpse of Complexity Theory
� characterization of computational hardness of a problem

� Turing Machine: machine model for abstract “run time” or“memory usage”

� the focus is on worst-case asymptotic time and space usage

Definition

problem is in O(f(n)) iff exists constant c and an algorithm which needs
c · f(n) steps (in the worst case on a Turing machine) for an input of size n

� logarithmic O(logn), e.g. binary search on sorted array of size n

� linear O(n), e.g. linear search in list with n elements

� quadratic O(n2), e.g. generate list of pairs of n elements

� exponential O(2n), e.g. produce all subsets of a set of n elements

Definition

polynomial problems: exists k such that worst-case run time is in O(nk)

class of polynomial problems is called P

2/24

SAT and the Complexity Class NP

Definition

A decision problem asks whether an input belongs to a certain class.

Prime: decide whether a number given as input is prime.

SAT: decide whether formula given as input is satisfiable.

Basic idea of NP is to use a “guess” and “check” approach,

where “guessing” is non-deterministic, e.g. just a “good” choice has to exist.

Definition

The class NP contains all decision problems which can be decided by a “guessing” and “checking” algorithm in
polynomial time in the input size.

Clearly both Prime and SAT belong to NP.

Theorem (Cook’71)

Any decision problem in NP can be reduced (encoded) polynomially into SAT. 3/24

Complexity Hierarchy

P NP PSPACE EXP NEXP

P polynomial time
NP non-deterministic polynomial time

PSPACE polynomial space
EXP exponential time

NEXP non-deterministic exponential time

except for P 6= EXP and NP 6= NEXP nothing is known about strict inclusion 4/24

Simple Algorithm for Satisfiability Checking

1 Algorithm: evaluate

Data: formula φ
Result: 1 iff φ is satisfiable

2 if φ contains a variable x then
3 pick v ∈ {>,⊥}

4 /* replace x by truth constant v, evaluate resulting formula */

5 if evaluate(φ[x|v]) then return 1;
6 else return evaluate(φ[x|v]) ;
7 else
8 switch φ do
9 case > do return 1;

10 case ⊥ do return 0;
11 case ¬ψ do return ! evaluate(ψ) /* true iff ψ is false */ ;
12 case ψ′ ∧ ψ′′ do
13 return evaluate(ψ′) && evaluate(ψ′′) /* true iff both ψ′ and ψ′′ are true */
14 case ψ′ ∨ ψ′′ do
15 return evaluate(ψ′) || evaluate(ψ′′) /* true iff ψ′ or ψ′′ is true */

5/24

Reasoning with (Propositional) Calculi

� goal: automatically reason about (propositional) formulas, i.e., mechanically show validity/unsatisfiability

� basic idea: use syntactical manipulations to prove/refute a formula

� elements of a calculus:

� axioms: trivial truths/trivial contradictions
� rules: inference of new formulas

� approach: construct a proof/refutation

� apply the rules of the calculus until only axioms are inferred
� if this is not possible, then the formula is not valid/unsatisfiable

� examples of calculi:

� sequence calculus: shows validity
� resolution calculus: shows unsatisfiability

6/24

Sequents

Definition

A sequent is an expression of the form
φ1, . . . , φn ` ψ

where φ1, . . . , φn, ψ are propositional formulas.
The formulas φ1, . . . , φn are called assumptions, ψ is called goal.

remarks:

� intuitively φ1, . . . , φn ` ψ means goal ψ follows from {φ1, . . . , φn}

� special case n = 0:

� written as ` ψ
� meaning: we have to prove that ψ is valid

� notation: for sequent φ1, . . . , φn ` ψ, we write K . . . φi ` ψ if we are only interested in assumption φi

� the assumptions are orderless not ordered

7/24

Axiom and Structural Rules

� axiom "goal in assumption":
If the goal is among the assumptions, the goal can be proved.

GoalAssum
K . . . , ψ ` ψ

� axiom "contradiction in assumptions":
If the assumptions are contradicting, anything can be proved.

ContrAssum
K . . . , φ,¬φ ` ψ

� rule "add valid assumption":

K . . . , φ ` ψ
ValidAssum if φ is valid

K . . . ` ψ

8/24

Negation Rules

� rules "contradiction":

K . . .¬ψ ` ⊥
A-¬

K . . . ` ψ

K . . . ` ¬φ
P-¬

K . . . , φ ` ⊥

� rules "elimination of double negation":

K . . . ` ψ
P-¬d

K . . . ` ¬¬ψ
K . . . , φ ` ψ

A-¬d
K . . . ,¬¬φ ` ψ

9/24

Binary Connective Rules

� rules "conjunction":

K . . . , φ1, φ2 ` ψ
A-∧

K . . . , φ1 ∧ φ2 ` ψ

K . . . ` ψ1 K . . . ` ψ2
P-∧

K . . . ` ψ1 ∧ ψ2

� rules "disjunction":

K . . . ,¬ψ1 ` ψ2
P-∨

K . . . ` ψ1 ∨ ψ2

K . . . , φ1 ` ψ K . . . , φ2 ` ψ
A-∨

K . . . , φ1 ∨ φ2 ` ψ

Rules for other connectives like implication “→” and equivalence “↔”
are constructed accordingly.

10/24

Some Remarks on Sequent Calculus

� premises of a rule: sequent(s) above the line

� conclusion of a rule: sequent below the line

� axiom: rule without premises

� non-deterministic rule: P-∨

� further non-determinism: decision which rule to apply next

� rules with case split: P-∧, A-∨

� proof of formula ψ

1. start with ` ψ
2. apply rules from bottom to top as long as possible, i.e., for given conclusion, find suitable premise(s)
3. if finally all sequents are axioms then ψ is valid

� note: there are many variants of the sequent calculus

11/24

Computing with Sequent Calculus

1 Algorithm: entails

Data: set of assumptions A, formula ψ
Result: 1 iff A entails ψ, i.e., A |= ψ

2 if ψ = ¬¬ψ′ then return entails (A, ψ′);
3 if ¬¬φ ∈ A then return entails (A\{¬¬φ} ∪ {φ},ψ);
4 if φ1 ∧ φ2 ∈ A then return entails (A\{φ1 ∧ φ2} ∪ {φ1, φ2},ψ);
5 if (ψ ∈ A) or (φ,¬φ ∈ A) then return 1;
6 if A ∪ {ψ} contains only literals then return 0;
7 switch ψ do
8 case ⊥ do
9 if ¬φ ∈ A then return entails (A\{¬φ},φ);

10 if φ1 ∨ φ2 ∈ A then
11 if ! entails (A\{¬φ1 ∨ φ2} ∪ {φ1},⊥) then return 0;
12 else return entails (A\{¬φ1 ∨ φ2} ∪ {φ2},⊥) ;

13 case x where x is a variable do return entails (A ∪ {¬x},⊥) ;
14 case ¬ψ′ do return entails (A ∪ {ψ′},⊥);
15 case ψ1 ∨ ψ2 do return entails (A ∪ {¬ψ1},ψ2);
16 case ψ1 ∧ ψ2 do return entails (A, ψ1) && entails (A, ψ2) ;

12/24

Proving XOR stronger than OR

6

proof direction

GoalAssum
b, (¬a ∨ ¬b),¬a ` b

ContrAssum
a, (¬a ∨ ¬b),¬a ` b

A-∨
(a ∨ b), (¬a ∨ ¬b),¬a ` b

P-∨
(a ∨ b), (¬a ∨ ¬b) ` a ∨ b

A-∧
(a ∨ b) ∧ (¬a ∨ ¬b) ` a ∨ b

A-¬d
¬¬((a ∨ b) ∧ (¬a ∨ ¬b)) ` a ∨ b

P-∨
` ¬((a ∨ b) ∧ (¬a ∨ ¬b)) ∨ (a ∨ b)

13/24

Refuting XOR stronger than AND

GAss
a, (¬a ∨ ¬b) ` a

CAss
b,¬b ` a b,¬a ` a

A-∨
b, (¬a ∨ ¬b) ` a

A-∨
(a ∨ b), (¬a ∨ ¬b) ` a

...
...

A-∨
(a ∨ b), (¬a ∨ ¬b) ` b

P-∧
(a ∨ b), (¬a ∨ ¬b) ` a ∧ b

A-∧
(a ∨ b) ∧ (¬a ∨ ¬b) ` a ∧ b

A-¬d
¬¬((a ∨ b) ∧ (¬a ∨ ¬b)) ` a ∧ b

P-∨
` ¬((a ∨ b) ∧ (¬a ∨ ¬b)) ∨ (a ∧ b)

counter example to validity: a = ⊥, b = >

14/24

Soundness and Completeness

For any calculus important properties are,
soundness, i.e. the question “Can only valid formulas be shown as valid?” and
completeness, i.e. the question ”Is there a proof for every valid formula?”.

Soundness

If a formula is shown to be valid in the Gentzen Calculus, then it is valid.

Proof sketch:
Consider each rule individually and show that from valid premises only valid conclusions can be drawn.

Completeness

Every valid formula can be proven to be valid in the Gentzen Calculus.

Proof sketch:
Show algorithm terminates and that there is at least one case where it returns false if the formula is not valid.

15/24

Proving Formulas in Normal Form

� In practice, formulas of arbitrary structure are quite challenging to handle

� tree structure
� simplifications affect only subtrees

� We have seen that CNF and DNF are able to represent every formula

� so why not use them as input for SAT?

� Conjunctive Normal Form

� refutability is easy to show
� CNF can be efficiently calculated (polynomial)

� Disjunctive Normal Form

� satisfiability is easy to show
� complexity is in getting the DNF

� CNF and DNF can be obtained from the truth tables

� exponential many assignments have to be considered

� alternative approach

� structural rewritings are (satisfiability) equivalence preserving

16/24

Transformation to Normal Form

1. Remove↔,→,⊕ as follows:
φ↔ ψ ⇔ (φ→ ψ) ∧ (ψ → φ), φ→ ψ ⇔ ¬φ ∨ ψ,
φ⊕ ψ ⇔ (φ ∨ ψ) ∧ (¬φ ∨ ¬ψ)

2. Transform formula to negation normal form (NNF) by application of laws of De Morgan and elimination of
double negation

3. Transform formula to CNF (DNF) by laws of distributivity

Example

Transform ¬(a ↔ b) → (¬(c ∧ d) ∧ e) to an equivalent formula in CNF.

1. a) remove equivalences: ⇔ ¬((a→ b) ∧ (b→ a))→ (¬(c ∧ d) ∧ e)
b) remove implications: ⇔ ¬¬((¬a ∨ b) ∧ (¬b ∨ a)) ∨ (¬(c ∧ d) ∧ e)

2. NNF:⇔ ((¬a ∨ b) ∧ (¬b ∨ a)) ∨ ((¬c ∨ ¬d) ∧ e)

3. ⇔ ((¬a ∨ b) ∨ ((¬c ∨ ¬d) ∧ e))) ∧ ((¬b ∨ a) ∨ ((¬c ∨ ¬d) ∧ e)))
⇔ (¬a ∨ b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ b ∨ e) ∧ (¬b ∨ a ∨ ¬c ∨ ¬d) ∧ (¬b ∨ a ∨ e)

17/24

Some Remarks on Normal Forms

� The presented transformation to CNF/DNF is exponential in the worst case (e.g., transform
(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn) to CNF).

� For DNF transformation, there is probably no better algorithm.

� For CNF transformation, there are polynomial algorithms.

� Basic idea: introduce labels for subformulas.
� Also works for formulas with sharing (circuits).
� Also known as “Tseitin Encoding”.

� CNF is usually not easier to solve, but easier to handle:

� compact data structures: a CNF is simply a list of lists of literals.

� CNF very popular in practice: standard input format DIMACS

� To solve satisfiability of CNF, there are many optimization techniques and dedicated algorithms.

18/24

Resolution
� the resolution calculus consists of the single resolution rule

x ∨ C ¬x ∨D
C ∨D

� C and D are (possibly empty) clauses
� the clause C ∨D is called resolvent
� variable x is called pivot
� usually antecedent clauses x ∨ C and ¬x ∨D

are assumed not to be tautological, i.e., x 6∈ C and x 6∈ D.

� in other words:
(¬x→ C), (x→ D) |= C ∨D

� resolution is sound and complete.

Example

one application of resolution

x ∨ y ∨ ¬z ¬x ∨ y′ ∨ ¬z
y ∨ ¬z ∨ y′

derivation of empty clause:
y ¬y

⊥

derivation of tautology:
x ∨ a ¬x ∨ ¬a

a ∨ ¬a

� the resolution calculus works only on formulas in CNF

� if the empty clause can be derived then the formula is unsatisfiable

� if no new clause can be generated by application of the resolution rule
then the formula is satisfiable

19/24

Resolution Example

We prove unsatisfiability of

{(¬x1 ∨ ¬x5), (x4 ∨ x5), (x2 ∨ ¬x4), (x3 ∨ ¬x4), (¬x2 ∨ ¬x3), (x1 ∨ x4 ∨ ¬x6), (x6)}

as follows:

x1 ∨ x4 ∨ ¬x6¬x2 ∨ ¬x3 x6

x1

¬x2 ∨ ¬x4

x3 ∨ ¬x4

¬x4

x2 ∨ ¬x4

x5

x4 ∨ x5

¬x1

¬x1 ∨ ¬x5

∅

¬x4

x2 ∨ ¬x4

x5

x4 ∨ x5

¬x1

¬x1 ∨ ¬x5

x1 ∨ ¬x6

∅

20/24

DPLL Overview

The DPLL algorithm is ...

� old (invented 1962)

� easy (basic pseudo-code is less than 10 lines)

� popular (well investigated; also theoretical properties)

� usually realized for formulas in CNF

� using binary constraint propagation (BCP)

� in its modern form as conflict drive clause learning (CDCL)
basis for state-of-the-art SAT solvers

21/24

Binary Constraint Propagation

Definition (Binary Constraint Propagation (BCP))

Let φ be a formula in CNF containing a unit clause C, i.e., φ has a clause C = (l) which consists only of literal
l. Then BCP (φ, l) is obtained from φ by

� removing all clauses with l

� removing all occurrences of l̄

� BCP on variable x can trigger
application of BCP on variable y

� if BCP produces the empty clause,
then the formula is unsatisfiable

� if BCP produces the empty CNF, then
the formula is satisfiable

Example
φ = {(¬a ∨ b ∨ ¬c), (a ∨ b), (¬a ∨ ¬b), (a)}

1. φ′ = BCP (φ, a) = {(b ∨ ¬c), (¬b)}

2. φ′′ = BCP (φ′,¬b) = {(¬c)}

3. φ′′ = BCP (φ′, c) = {} = >

22/24

DPLL Algorithm

1 Algorithm: evaluate

Data: formula φ in CNF
Result: 1 iff φ satisfiable

2 while 1 do
3 φ = BCP(φ)
4 if φ== > then return 1 ;
5 if φ == ⊥ then
6 if stack.isEmpty() then return 0 ;
7 (l, φ) = stack.pop ()
8 φ = φ ∧ l
9 else

10 select literal l occurring in φ
11 stack.push(l̄, φ)
12 φ = φ ∧ l

23/24

Some Remarks on DPLL

� DPLL is the basis for most state-of-the-art SAT solvers

� Lingeling http://fmv.jku.at/lingeling

� CaDiCaL http://fmv.jku.at/cadical

� some more established solvers: MiniSAT, PicoSAT, Glucose, . . .

� DPLL alone is not enough - powerful optimizations required for efficiency:

� learning and non-chronological back-tracking (CDCL)
� reset strategies and phase-saving
� compact lazy data-structures
� variable selection heuristics
� usually combined with preprocessing before and inprocessing during search

� variants of DPLL are also used for other logics:

� quantified propositional logic (QBF)
� satisfiability modulo theories (SMT)

� challenge to parallelize

� some successful attempts: ManySAT, Plingeling, Penelope, Treengeling, . . .

24/24

http://fmv.jku.at/lingeling
http://fmv.jku.at/cadical

