PROPOSITIONAL LOGIC I
VL Logik: WS 2017/18

4

Martina Seidl (martina.seidl@jku.at),
Armin Biere (biere@jku.at)
Institut fir Formale Modelle und Verifikation

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Example: Party Planning

We want to plan a party.
Unfortunately, the selection of the guests is not straight forward.

We have to consider the following rules.

1. If two people are married, we have to invite them both or none
of them. Alice is married to Bob and Cecile is married to

2. If we invite Alice then we also have to invite Cecile.
Cecile does not care if we invite Alice but not her.

3. and Eva can’t stand each other, so it is not possible to
invite both.

4. We want to invite Bob and

Question: Can we find a guest list?

JXU 1/47

Party Planning with Propositional Logic

m propositional variables:
inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva,
inviteFred
m constraints:
1. invite married: inviteAlice « inviteBob, inviteCecile «
inviteDavid
2. if Alice then Cecile: inviteAlice — inviteCecile
3. either David or Eva: - (inviteEva « inviteDavid)
4. invite Bob and Fred: inviteBob A inviteFred

m encoding in propositional logic:

(inviteAlice « inviteBob) A (inviteCecile « inviteDavid) A
(inviteAlice — inviteCecile) A = (inviteEva « inviteDavid) A
inviteBob A inviteFred

JXU 2/47

A Puzzle

A lady is in one of the two rooms called A and B. A tiger is also in A or B. On the door
of A there is a sign: “This room contains a lady, the other room contains a tiger.” The
door of room B has a sign: “The tiger and the lady are not in the same room.” One

sign lies. Where is the lady, where is the tiger?
based on a puzzle by Raymond Smullyan

JXU 3/47

A Puzzle

A lady is in one of the two rooms called A and B. A tiger is also in A or B. On the door
of A there is a sign: “This room contains a lady, the other room contains a tiger.” The
door of room B has a sign: “The tiger and the lady are not in the same room.” One

sign lies. Where is the lady, where is the tiger?
based on a puzzle by Raymond Smullyan

One possible SAT encoding:

m signOnA represents that sign of room A says the truth
m signOnB represents that sign of room B says the truth
m ladylnA or ladyInB represents that lady is in A or B respectively

m tigerInA or tigerInB represents that tiger is in A or B respectively

m lady is in room A or B, but not in both: (ladyInA v ladyInB) A —(ladylnA A ladyInB)
m tigeris in room A or B, but not in both: (tigerInA v tigerinB) A —(tigerinA A tigerinB)
m one sign lies, one sign is true: (signOnA & =signOnB)
m sign of room A: signOnA « (ladyInA A tigerinB)
= sign of room B: signOnB « (—(tigerinA A ladylnA) A —(tigerinB A ladyInB))

JXU 3/47

Syntax of Propositional Logic (1/2)

The set L of well-formed propositional formulas is the smallest set
such that

1. T,Le L;

2. P C L where P is the set of atomic propositions (atoms,
variables);

3. if ¢ € Lthen (=¢) € L;
4. if g, € Lthen (poy) e Lwitho e {V,A, &, >}

L is the language of propositional logic. The elements of L are
propositional formulas.

JXU 4/47

Excursus: Backus-Naur Form (BNF)

m notation technique for describing the syntax of a language
m elements:

O non-terminal symbols (variables): enclosed in brackets ()

O ::= indicates the definition of a non-terminal symbol

O the symbol | means “or”

o all other symbols stand for themselves (sometimes they are
quoted, e.g., “->")

example: definition of the language of decimal numbers in BNF:

(number) ::= (integer) “.” {integer)

(integer) ::= (digit) | (digit) (integer)

(digit) ==1]2|314|5]6|7|8]9]0

some words: 0.0, 1.1, 123.546, 01.10000, ...
J¥U 5/47

Syntax of Propositional Logic (2/2)

In Backus-Naur form (BNF) propositional formulas are described
as follows:

=TI LIplA)(@VHI@A) (D= @) (D—¢)

Example:
m T |] (—|a)] (—|(—|a))] (—|((1\/b))

Hag ®m(=T) m(aVa) B (—=(a o b))
B (ma)Vvad)e (b- o)

B (@ Vaz) V(a3 A L)) — D)

JXU 6/47

Rules of Precedence

To reduce the number of parenthesis, we use the following
conventions (in case of doubt, uses parenthesis!):

m - is stronger than A

m A is stronger than v

m V is stronger than —

m — is stronger than &

m Binary operators of same strength are assumed to be left
parenthesized (also called “left associative”)

Example:
B —aAbVc—deo fisthesameas (ma) Ab) V) > d) & f).
mdVvd' vad' Ab VD' isthesameas ((a' Vad”)V(a” Ab))VDb").

mdANd' Nd'VD ANV isthesame as ((a’ Ad”)ANad"”')V (b’ AD)).

JXU 7/47

JXU

Formula Tree

m formulas have a tree structure

O inner nodes: connectives
O leaves: truth constants, variables

m default: inner nodes have one child node (negation) or
two nodes as children (other connectives).

m tree structure reflects the use of parenthesis

m simplification:
disjunction and conjunction may be considered as n-ary
operators,
i.e., if a node N and its child node C are of the same kind of
connective (conjunction / disjunction), then the children of C
can become direct children of N and the C is removed.

8/47

Formula Tree: Example (1/2)

The formula
(av®V =)o (TAW(a—-b)V(LVaVb)))

has the formula tree

JXU

9/47

Formula Tree: Example (2/2)

The formula
(av bV =) (TAW(a— =b)V(LVaVb)))

has the simplified formula tree
/ [< \/A
b

|
JXU b 10/47

Subformulas

An immediate subformula is defined as follows:

m truth constants and atoms have no immediate subformula.

m only immediate subformula of —¢ is ¢.

m formula ¢ oy (o € {A, V, &, —}) has immediate subformulas ¢
and .

Informal: a subformula is a formula that is part of a formula

The set of subformulas of a formula ¢ is the smallest set S with

1. ¢€8
2. if ¢ € S then allimmediate subformulas of y are in S

The subformulas of (a vV b) — (¢ A =—d) are
{a,b,c,d,—~d,—~—=d,aV b,c A——d,(aV b) = (c A =—d)}

JXU 11/47

Limboole

m SAT-solver

m available at http://fmv. jku.at/limboole/
m input format in BNF:

i)
(ffy = (implies) | (implies) “<->" {implies)

(expr)

(implies) ::= {or) | {or) “->" {or) | (or) “<-"{or)
{or) ::= {and) | {and) “|” {and)
{and) ::= {(not) | {(not) “&” {(not)
{not) ::= (basic) | “!” {not)
(basic) ::= (vary | “C (expr) “)”
where 'var’ is a string over letters, digits,and—_ . []$ @

In Limboole the formula (a Vv b) — (¢ A =—d) is represented as
JU (@ | b) -> (c & !'d) 12/47

http://fmv.jku.at/limboole/

Special Formula Structures

m literal: variable or a negated variable (also (negated) truth
constants)
O examples of literals: x, —x,y, -y
o If /is a literal with [= x or [= —=x then var(l) = x.
O For literals we use letter [, k (possibly indexed or primed).
O In principle, we identify ==/ with [.
m clause: disjunction of literals
O unary clause (clause of size one): [where [is a literal
O empty clause (clause of size zero): L
O examples of clauses: (x V y), (=x V X’ V =x"), x, -y
m cube: conjunction of literals
O unary cube (cubes of size one): [where [is a literal
O empty cubes (cubes of size zero): T
O examples of cubes: (x A y), (=x A X" A =x""), x, =y

JXU 13/47

Negation Normal Form (1/2)

Negation Normal Form (NNF) is defined as follows:

m Literals and truth constants are in NNF;
B oy (o €{V,A})isin NNF iff ¢ and ¢ are in NNF;

m no other formulas are in NNF.

.

In other words: A formula in NNF contains only conjunctions,
disjunctions, and negations and negations only occur in front of
variables and constants.

JXU 14/47

Negation Normal Form (2/2)

If a formula is in negation normal form then

m in the formula tree, nodes with negation symbols only occur
directly before leaves.

m there are no subformulas of the form —¢ where ¢ is something
else than a variable or a constant.

m it does not contain NAND, NOR, XOR, equivalence, and
implication connectives.

Example: The formula ((x v =x1) A (x V (=z V =x1))) is in NNF but

=((x V =x1) A (x V (=2 V =x1))) is not in NNF.

JXU 15/47

Conjunctive Normal Form (CNF)

A propositional formula is in conjunctive normal form (CNF)
iff it is a conjunction of clauses.

A formula in conjunctive normal form is

m in negation normal form
m T if it contains no clauses

m easy to check whether it can be refuted

remark: CNF is the input of most SAT-solvers (DIMACS format)

JXU 16/47

Disjunctive Normal Form (DNF)

A propositional formula is in disjunctive normal form (DNF) if
it is a disjunction of cubes.

A formula in disjunctive normal form is

®m in negation normal form
m L if it contains no cubes

m easy to check whether it can be satisfied

JXU 17/47

Examples for CNF and DNF

Examples CNF

T AL ADL

[m L VLV

Hoa B (@ V-a)A(ayVbyVay)Aay

 -a B (V. Vi) A AU VY L))

Examples DNF

T B LhALAL

" L B L VLVl

" oa B (g A-ax)V(ay AbyANay)Va

B —a (A AV VT A A L)

JXU

18/47

Conventions

we use the following conventions unless stated otherwise:

a,b,c, x,y,z denote variables and /, k denote literals
¢, ¥,y denote arbitrary formulas

[
[
m C, D denote clauses or cubes (clear from context)
m clauses are also written as sets

oy v...vl)={,...1,}

O to add a literal [to clause C, we write C U {/}

O to remove a literal / from clause C, we write C\{/}
formulas in CNF are also written as sets of sets

O @ Ve Vi) Ao c Al VooV L)) =

h -l ds oAbty - 1Y
O to add a clause C to CNF ¢, we write ¢ U {C}

O to remove a clause C from CNF ¢, we write ¢\{C}

JXU 19/47

Negation

m unary connective — (operator with exactly one argument)
m negating the truth value of its argument
m alternative notation: !¢, ¢, —¢, NOT ¢

9| ~¢ set
truth table: 0 | 1 -
- view:
1/ 0 -
Example:

m If the atom “It rains.” is true then the negation “It does not rain.” is false.
m [If atom a is true then —a is false.
m If formula ((a V x) Ay) is true then formula —((a V x) A y) is false.

m If formula (b — y) A z) is true then formula =((b — y) A z) is false.

\. J

JXU 20/47

Conjunction

m a conjunction is true iff both arguments are true
m alternative notation for ¢ A y: ¢&r, ¢, & = W, ¢ - Y, PANDY
m For (¢1 A ... A ¢,) we also write A\, ;.

¢ pAY

: _set
0 — [
view:
0
1
Example:

B (a A —a) is always false.

truth table:

- - 0 O
- O = O &

m (T Aa)istrueifaistrue. (L A ¢) is always false.

m If (aVv b)istrue and (=c V d) is true then (a vV b) A (=c V d) is true.

JXU 21/47

Disjunction

m a disjunction is true iff at least one of the arguments is true
m alternative notation for ¢ vV : @, ¢ + ¥, pORY
m For (¢ V...V ¢,) we also write \/_, ¢;.

AR

(1) e ‘
view:
1
1
Example:

® (aV —a)is always true.

¢

truth table:

- - 0 O
- O = O &

m (T Va)is always true. (L V a) is true if a is true.

m If (a > b)is true and (=¢ — d) then (a — b) V (=c — d) is true.

JXU 22/47

Implication

m an implication is true iff the first argument is false or both
arguments are true (Ex falsum quodlibet.)
m alternative notation: ¢ > ¢, ¢ IMPL ¢

¢ Y| ooy
00 1
set
truthtable: 0 1 1 —
- view:
10 0 -
1 1 1
Example:

m If atom "It rains." is true and atom "The street is wet." is true then the
statement "If it rains, the street is wet." is true.

® (L — a)and (a — a) are always true. T — ¢ is true if ¢ is true.

JXU

23/47

Equivalence

m true iff both subformulas have the same value
m alternative notation: ¢ =y, ¢ =, ~

¢ Y|Py
00 1
set
truth table: 0 1 0 -
I view:
10 0 -
1 1 1
Example:

m The formula a < a is always true.
m The formula a < bis true iff a is true and b is true or a is false and b is false.

® T < Lis never true.

J¥U 24/47

The Logic Connectives at a Glance

\.

¢ Y| T L - gAY $VY sou oy ey 1Y $lY
0 0|1 0 1 0 0 1 1 0 1 1
0o 1 1 0 1 0 1 1 0 1 1 0
1 0 1 0 0 0 1 0 0 1 1 0
1 1 1 0 0 1 1 1 1 0 0 0
Example:

¢ Y| (=pAY) —dVY (do>) ANWY > P)

0 0 0 1 1

0o 1 1 1 0

1 0 1 0 0

1 1 1 1 1

Observation: connectives can be expressed by other connectives.

JXU

25/47

Other Connectives

m there are 16 different functions for binary connectives
m so far, we had A, V, &, —
m further connectives:

O ¢ « ¥ (also &, xor, antivalence)

O ¢ T ¢ (nand, Sheffer Stroke Function)

O ¢ | ¥ (nor, Pierce Function)

¢ Ylowy ¢T¢ ¢ly
0 0| O 1 1
0 1 1 1 0
1.0 1 1 0
11 0 0 0

m nor and nand can express every other boolean function
(i.e., they are functional complete)
m often used for building digital circuits (like processors)

JXU 26/47

Propositional Formulas and Digital Circuits

A A
and gate B nand gate B
A A
or gate B nor gate B
A
A
xor gate B not gate

JXU 27/47

Example of a Digital Circuit: Half Adder

X yl|lc s
0 0/0 O

0 1/0 1

1. 0[0 1 XH’A)D—@S
1 1/1 0 Y,

From the truth table, we see that
C
cCEe XAy Y o

and
sS XxDYy.

JXU 28/47

Different Notations

Verilog
operator logic circuits C/C++/Java/C# VHDL Limboole
1 T 1 true 1 -

0 1 0 false 0 -
negation) ¢ —0 1) not ¢ ¢
conjunction YN o U o && Y ¢ and o &Y
disjunction VY ¢+ ¢y pory ¢y
exclusive or || ¢ > ¢ PDY o=y ¢ xor ¥ -
implication || ¢ — ¢ dOY - - >y
equivalence || ¢ & ¥ o=y ¢ ==y ¢ xnoryy P <>y
Example:

[] (apv bV =) & (TAW(a— =b)V(cVaVb)))
m(a+b+c)=c({@a>-b)+0+a+b)
m(all@llle) ==(c&& ((tall!b)]l (falsell all b))

29/47

\a

JxXU

All 16 Binary Functions

| JUBISUOD

10

uoneoldwi

@ouajeAIinba
pue
pueu

10X

Jou

0 luelsuod

0

1

1

0 0 O
1

0

1

0O 0 00O OO0 O O

1

>

<

0 0|0

0/0 0 0 O

1

1

30/47

JXU

Assignment

m a variable can be assigned one of two values from the
two-valued domain B, where B = {1, 0}

m the mapping v : # — B is called assignment, where # is the
set of atomic propositions

m we sometimes write an assignment v as set V with
V C P U {—x|x € P} such that

O xeViffv(x) =1
O -xeViffv(x)=0

m for n variables, there are 2" assignments possible

®m an assignment corresponds to one line in the truth table

JXU 31/47

Semantics of Propositional Logic

Given assignment v : # — B, the interpretation [.], : L > B is
defined by:

[Tl,=1,[1],=0

if x € P then [x], = v(x)

[—¢l, = 1iff [¢], =0

(¢ Vyl, =1iff [¢], =1 or[y], =1

What about the other connectives?

JXU 32/47

Satisfying/Falsifying Assigments

m An assignment is called

o satisfying a formula ¢ iff [¢], = 1.
o falsifying a formula ¢ iff [¢], = 0.

m A satisfying assignment for ¢ is a model of ¢.

m A falsifying assignment for ¢ is a counter-model of ¢.

Example:

For formula ((x A y) V =2),
m {-x,y,z}is a counter-model,
® {x,y,z} is a model.

m {x,y, -z} is another model.

JXU 33/47

Properties of Propositional Formulas (1/3)

m formula ¢ is satisfiable iff
there exists interpretation [.], with [¢], =1
check with 1imboole -s

m formula ¢ is valid iff
for all interpretations [.], it holds that [¢], = 1
check with 1limboole

m formula ¢ is refutable iff
exists interpretation [.], with [¢], = 0
check with 1imboole

m formula ¢ is unsatisfiable iff
[¢], = 0 for all interpretations [.],
check with 1imboole -s

JXU 34/47

Properties of Propositional Formulas (2/3)

m avalid formula is called tautology

m an unsatisfiable formula is called contradiction

Example:

. . B a — b is satisfiable.
m T is valid.

B g —aisa
contradiction.

B 1 is unsatisfiable.
B (aV -b)A(-aVb)is

vV =b) A (maV b)is
refutable. u (a YA (maV b)i

satisfiable.

JXU 35/47

Properties of Propositional Formulas (3/3)

m A satisfiable formula is m A refutable formula is
O possibly valid O possibly satisfiable
O possibly refutable O possibly unsatisfiable
O not unsatisfiable. O not valid.
m A valid formula is m An unsatisfiable formula is
O satisfiable o refutable
O not refutable O not valid
O not unsatisfiable. O not satisfiable.
Example:

m satisfiable, but not valid: a & b
m satisfiable and refutable: (a vV b) A (ma V ¢)

m valid, not refutable T Vv (a A —a); not valid, refutable
(LVDb)

\a

JxXU

36/47

Further Connections between Formulas

A formula ¢ is valid iff =¢ is unsatisfiable.

A formula ¢ is satisfiable iff =¢ is not valid.

The formulas ¢ and y are equivalent iff ¢ < y is valid.

The formulas ¢ and ¢ are equivalent iff (¢ <) is
unsatisfiable.

A formula ¢ is satisfiable iff ¢ < L.

JXU 37/47

Simple Algorithm for Satisfiability Checking

1 Algorithm: evaluate

Data: formula ¢
Result: 1 iff ¢ is satisfiable

2 if ¢ contains a variable x then

3 pick v € {T, 1}

4 /* replace x by truth constant v, evaluate resulting formula */

5 if evaluate(¢[x|v]) then return 1;

6 else return evaluate(g[x[V]) ;

7 else

8 switch ¢ do

9 case T do return 1;
10 case L do return 0;
1 case —y do return ! evaluate(y) /* true iff y is false */ ;
12 case Yy’ Ay” do
13 ‘ return evaluate(y’) && evaluate(y”’) /* true iff both ¥’ and '’ are true */
14 case ¥’ vy do
15 ‘ return evaluate(y’) || evaluate(y”’) /* true iff Y or ¥’ is true */

JXU 38/47

Semantic Equivalence

Two formula ¢ and ¢ are semantic equivalent (written as ¢
) iff forall interpretations [.], it holds that [¢], = [¥],.

B & is a meta-symbol, i.e., it is not part of the language.

m natural language: if and only if (iff)

B ¢ & yiff ¢ & s valid, i.e., we can express semantics by
means of syntactics.

m If ¢ and ¢ are not equivalent, we write ¢ & .

Example:
.a\/—wt?é}b—)ﬂb I(aVb)A—(aVb)@J.

maV-asbVv-b Baobeoo)o(aeb)oc

JXU 39/47

Examples of Semantic Equivalences (1/2)

GAY S YAD BV S YV commutativity
GAYAY) S @AY AY VY VY)S@VY) VY associativity
pA@PVY) & @ OV(pAY) & ¢ absorption
PAWUNVY) S @AYVPAY) | VW AY) S (V) A@VY) | distributivity
(g AY) © =pV -y “(pVY) & ~p Ay laws of De Morgan
poy o @AY -9 poy @AYV (~¢A-Y) | synt equivalence

J¥U 40/47

Examples of Semantic Equivalences (2/2)

VYo -p—oyY | oY S - — ¢ | implications
dA-Pp S L PV T complement
A double negation
PANT ¢ PVLEP neutrality
VT ST dALES L
“Toe L -leT
JXU 41/47

Logic Entailment

Let ¢1,...0,, ¢ be propositional formulas. Then ¢,...¢,
entail ¥ (written as ¢1,...,¢, E¥)iff [¢1], =1,...[¢,], = 1
implies that [¢], = 1.

Informal meaning: True premises derive a true conclusion.

m = is a meta-symbol, i.e., it is not part of the language.

B P,...0, EYIf (01 AL . A@,) = Yisvalid, i.e., we can
express semantics by means of syntactics.

m If ¢1,...¢, do not entail , we write ¢, ... ¢, £ .

Example:
makEaVvb mEaV-a ®maa—>bED

mabFEanb ®mFEaN-a B lLFaA-a
42/47

Satisfiability Equivalence

Two formulas ¢ and are satisfiability-equivalent (written as
¢ Ssar Y) iff both formulas are satisfiable or both are con-
tradictory.

m Satisfiability-equivalent formulas are not necessarily satisfied
by the same assignments.

m Satisfiability equivalence is a weaker property than semantic
equivalence.

m Often sufficient for simplification rules: If the complicated
formula is satisfiable then also the simplified formula is
satisfiable.

JXU 43/47

Example: Satisfiability Equivalence

positive pure literal elimination rule:

If a variable x occurs in a formula but —x does not occur in the
formula, then x can be substituted by T. The resulting formula is
satisfiability-equivalent.

Example:

B xSy T,butxe T

B (aAD)V (=c Aa) ©gar bV —c, but
(@anb)V(=cANa) e bV —c

J¥U 44/47

Representing Functions as CNFs

m Problem: Given the truth table of a Boolean function ¢. How is
the function represented in propositional logic?

Solution (in CNF): a b c|o¢ clauses
1. Represent each assignmenty | ¢ 0 0] 0| avbve
0o 0 1|1
where ¢ has value 0 as o 1 o1
clause: 01 1]0|av-bv-e
O Ifvariable xist1inv,add-x| 1 ¢ o | 1
to clause. 1 0 10| ~avbVv-c
o If variable xis 0 in v, add x 1 1 0|0 | ~av-bVve
to clause. 11 1|1
¢ =
2. nn Il cl
CO. ectla clauses by @V DY &) A @Y bV =) A
conjunction. (=a VbV =¢) A(=aV —bV c)

JXU 45/47

Representing Functions as DNFs

m Problem: Given the truth table of a Boolean function ¢. How is
the function represented in propositional logic?

Solution (in DNF):

1. Represent each
assignment v where ¢ has
value 1 as cube:

o If variable xis 1 in v, add
x to cube.

o If variable xis 0 in v, add
—-x to cube.

2. Connect all cubes by
disjunction.

JXU

a b c| ¢ cubes

0 0 OO

0o 0 11 —aAN-bAc

0o 1 0 1 —aAbA-c

0o 1 1]0

1 0 0 1 aA=bA-c

1 0 1|0

1 1 0|0

1 1 11 aANbAc
¢ =

(maAN=bAC)V(maNbA-c)V
(@aN=bA=c)V(aAbAc)

46/47

Functional Completeness

m In propositional logic there are
o 2 functions of arity 0 (T, L)
O 4 functions of arity 1 (e.g., not)
o 16 functions of arity 2 (e.g., and, or, ...)
o 2% functions of arity n.
m A function of arity n has 2" different combinations of
arguments (lines in the truth table).
m A functions maps its arguments either to 1 or 0.

A set of functions is called functional complete for proposi-
tional logic iff it is possible to express all other functions of
propositional logic with functions from this set.

{=, A}, {=, V}, {nand} are functional complete.

JXU 47/47

