PROPOSITIONAL LOGIC II

VL Logik: WS 2017/18

Martina Seidl (martina.seidl@jku.at), Armin Biere (biere@jku.at) Institut für Formale Modelle und Verifikation

Example: Party Planning

We want to plan a party.

Unfortunately, the selection of the guests is not straight forward.

We have to consider the following rules.

- If two people are married, we have to invite them both or none of them. Alice is married to Bob and Cecile is married to David.
- If we invite Alice then we also have to invite Cecile.Cecile does not care if we invite Alice but not her.
- David and Eva can't stand each other, so it is not possible to invite both.
- 4. We want to invite Bob and Fred.

Question: Can we find a guest list?

Party Planning with Propositional Logic

propositional variables:

inviteAlice, inviteBob, inviteCecile, inviteDavid, inviteEva, inviteFred

- constraints:
 - invite married: inviteAlice ↔ inviteBob, inviteCecile ↔ inviteDavid
 - 2. if Alice then Cecile: inviteAlice → inviteCecile
 - 3. either David or Eva: ¬ (inviteEva ↔ inviteDavid)
 - 4. invite Bob and Fred: inviteBob ∧ inviteFred
- encoding in propositional logic:

```
(inviteAlice ↔ inviteBob) ∧ (inviteCecile ↔ inviteDavid) ∧
(inviteAlice → inviteCecile) ∧ ¬ (inviteEva ↔ inviteDavid) ∧
inviteBob ∧ inviteFred
```


A Puzzle

A lady is in one of the two rooms called A and B. A tiger is also in A or B. On the door of A there is a sign: "This room contains a lady, the other room contains a tiger." The door of room B has a sign: "The tiger and the lady are not in the same room." One sign lies. Where is the lady, where is the tiger?

based on a puzzle by Raymond Smullyan

A Puzzle

A lady is in one of the two rooms called A and B. A tiger is also in A or B. On the door of A there is a sign: "This room contains a lady, the other room contains a tiger." The door of room B has a sign: "The tiger and the lady are not in the same room." One sign lies. Where is the lady, where is the tiger?

based on a puzzle by Raymond Smullyan

One possible SAT encoding:

- signOnA represents that sign of room A says the truth
- signOnB represents that sign of room B says the truth
- ladylnA or ladylnB represents that lady is in A or B respectively
- tigerInA or tigerInB represents that tiger is in A or B respectively
- - tiger is in room A or B, but not in both: (tigerInA \vee tigerInB) $\wedge \neg$ (tigerInA \wedge tigerInB)
- one sign lies, one sign is true:

(signOnA ↔ ¬signOnB)

sign of room A:

signOnA ↔ (ladylnA ∧ tigerlnB)

sign of room B:

 $\textit{signOnB} \leftrightarrow (\neg(\textbf{tigerInA} \land \textbf{ladyInA}) \land \neg(\textbf{tigerInB} \land \textbf{ladyInB}))$

Syntax of Propositional Logic (1/2)

The set $\mathcal L$ of well-formed propositional formulas is the smallest set such that

- 1. $\top, \bot \in \mathcal{L}$;
- 2. $\mathcal{P} \subseteq \mathcal{L}$ where \mathcal{P} is the set of atomic propositions (atoms, variables);
- 3. if $\phi \in \mathcal{L}$ then $(\neg \phi) \in \mathcal{L}$;
- **4**. if $\phi, \psi \in \mathcal{L}$ then $(\phi \circ \psi) \in \mathcal{L}$ with $\circ \in \{\lor, \land, \leftrightarrow, \rightarrow\}$.

 $\mathcal L$ is the language of propositional logic. The elements of $\mathcal L$ are propositional formulas.

Excursus: Backus-Naur Form (BNF)

- notation technique for describing the syntax of a language
- elements:
 - □ non-terminal symbols (variables): enclosed in brackets ⟨⟩
 - □ ::= indicates the definition of a non-terminal symbol
 - the symbol | means "or"
 - □ all other symbols stand for themselves (sometimes they are quoted, e.g., "->")

example: definition of the language of decimal numbers in BNF:

```
\langle number \rangle ::= \langle integer \rangle "." \langle integer \rangle

\langle integer \rangle ::= \langle digit \rangle \mid \langle digit \rangle \langle integer \rangle

\langle digit \rangle ::= 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 0
```

some words: 0.0, 1.1, 123.546, 01.10000, ...

Syntax of Propositional Logic (2/2)

In Backus-Naur form (BNF) propositional formulas are described as follows:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \lor \phi) \mid (\phi \land \phi) \mid (\phi \leftrightarrow \phi) \mid (\phi \rightarrow \phi)$$

- \blacksquare \top \blacksquare $(\neg a)$ \blacksquare $(\neg (\neg a))$ \blacksquare $(\neg (a \lor b))$

- $\blacksquare a \qquad \blacksquare (\neg \top) \qquad \blacksquare (a_1 \lor a_2) \qquad \blacksquare (\neg (a \leftrightarrow b))$
- \blacksquare $(((\neg a) \lor a') \leftrightarrow (b \rightarrow c))$
- $(((a_1 \lor a_2) \lor (a_3 \land \bot)) \rightarrow b)$

Rules of Precedence

To reduce the number of parenthesis, we use the following conventions (in case of doubt, uses parenthesis!):

- \blacksquare ¬ is stronger than \land
- \blacksquare \land is stronger than \lor
- \blacksquare \lor is stronger than \rightarrow
- \blacksquare \rightarrow is stronger than \leftrightarrow
- Binary operators of same strength are assumed to be left parenthesized (also called "left associative")

- $\blacksquare \ \neg a \land b \lor c \to d \leftrightarrow f \text{ is the same as } (((((\neg a) \land b) \lor c) \to d) \leftrightarrow f).$
- $a' \lor a'' \lor a'' \land b' \lor b''$ is the same as $(((a' \lor a'') \lor (a'' \land b')) \lor b'')$.
- $a' \wedge a'' \wedge a'' \vee b' \wedge b''$ is the same as $(((a' \wedge a'') \wedge a''') \vee (b' \wedge b''))$.

Formula Tree

- formulas have a tree structure
 - inner nodes: connectives
 - □ <u>leaves</u>: truth constants, variables
- default: inner nodes have one child node (negation) or two nodes as children (other connectives).
- tree structure reflects the use of parenthesis
- simplification:

 $\underline{\text{disjunction}}_{\text{operators,}}$ and $\underline{\text{conjunction}}_{\text{may}}$ may be considered as n-ary

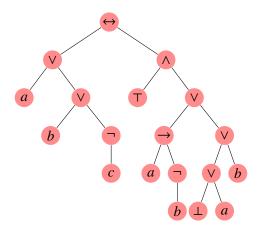
i.e., if a node N and its child node C are of the same kind of connective (conjunction / disjunction), then the children of C can become direct children of N and the C is removed.

Formula Tree: Example (1/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \rightarrow \neg b) \lor (\bot \lor a \lor b)))$$

has the formula tree

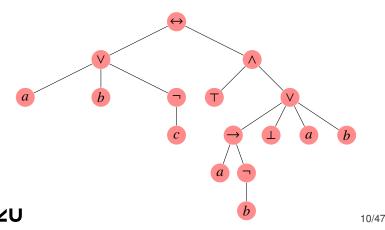


Formula Tree: Example (2/2)

The formula

$$(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \rightarrow \neg b) \lor (\bot \lor a \lor b)))$$

has the simplified formula tree



Subformulas

An immediate subformula is defined as follows:

- truth constants and atoms have no immediate subformula.
- only immediate subformula of $\neg \phi$ is ϕ .
- formula $\phi \circ \psi$ ($\circ \in \{\land, \lor, \leftrightarrow, \rightarrow\}$) has immediate subformulas ϕ and ψ .

Informal: a subformula is a formula that is part of a formula

The set of subformulas of a formula ϕ is the smallest set S with

- 1. $\phi \in S$
- 2. if $\psi \in S$ then all immediate subformulas of ψ are in S

The subformulas of $(a \lor b) \to (c \land \neg \neg d)$ are $\{a,b,c,d,\neg d,\neg \neg d,a \lor b,c \land \neg \neg d,(a \lor b) \to (c \land \neg \neg d)\}$

Limboole

- SAT-solver
- available at http://fmv.jku.at/limboole/
- input format in BNF:

```
\langle expr \rangle ::= \langle iff \rangle
\langle iff \rangle ::= \langle implies \rangle \mid \langle implies \rangle \text{"}<-->\text{"} \langle implies \rangle
\langle implies \rangle ::= \langle or \rangle \mid \langle or \rangle \text{"}--->\text{"} \langle or \rangle \mid \langle or \rangle \text{"}<--\text{"} \langle or \rangle
\langle or \rangle ::= \langle and \rangle \mid \langle and \rangle \text{"}|\text{"} \langle and \rangle
\langle and \rangle ::= \langle not \rangle \mid \langle not \rangle \text{"}\&\text{"} \langle not \rangle
\langle not \rangle ::= \langle basic \rangle \mid \text{"}|\text{"} \langle not \rangle
\langle basic \rangle ::= \langle var \rangle \mid \text{"}(\text{"} \langle expr \rangle \text{"})\text{"}
```

where 'var' is a string over letters, digits, and - . [] \$ @

In Limboole the formula $(a \lor b) \to (c \land \neg \neg d)$ is represented as

$$((a \mid b) \rightarrow (c \& !!d))$$

Special Formula Structures

- <u>literal</u>: variable or a negated variable (also (negated) truth constants)
 - \square examples of literals: $x, \neg x, y, \neg y$
 - □ If *l* is a literal with l = x or $l = \neg x$ then var(l) = x.
 - \Box For literals we use letter l, k (possibly indexed or primed).
 - □ In principle, we identify $\neg \neg l$ with l.
- clause: disjunction of literals
 - \square unary clause (clause of size one): l where l is a literal
 - o empty clause (clause of size zero): o
 - \square examples of clauses: $(x \lor y)$, $(\neg x \lor x' \lor \neg x'')$, $x, \neg y$
- <u>cube</u>: conjunction of literals
 - □ unary cube (cubes of size one): l where l is a literal
 - □ empty cubes (cubes of size zero): ⊤
 - \square examples of cubes: $(x \land y)$, $(\neg x \land x' \land \neg x'')$, x, $\neg y$

Negation Normal Form (1/2)

Negation Normal Form (NNF) is defined as follows:

- Literals and truth constants are in NNF;
- $\phi \circ \psi$ ($\circ \in \{\lor, \land\}$) is in NNF iff ϕ and ψ are in NNF;
- no other formulas are in NNF.

In other words: A formula in NNF contains only conjunctions, disjunctions, and negations and negations only occur in front of variables and constants.

Negation Normal Form (2/2)

If a formula is in negation normal form then

- in the formula tree, nodes with negation symbols only occur directly before leaves.
- there are no subformulas of the form $\neg \phi$ where ϕ is something else than a variable or a constant.
- it does not contain NAND, NOR, XOR, equivalence, and implication connectives.

Example: The formula $((x \lor \neg x_1) \land (x \lor (\neg z \lor \neg x_1)))$ is in NNF but

 $\neg((x \lor \neg x_1) \land (x \lor (\neg z \lor \neg x_1)))$ is not in NNF.

Conjunctive Normal Form (CNF)

A propositional formula is in <u>conjunctive normal form</u> (CNF) iff it is a conjunction of clauses.

A formula in conjunctive normal form is

- in negation normal form
- ¬ if it contains no clauses
- easy to check whether it can be refuted

remark: CNF is the input of most SAT-solvers (DIMACS format)

Disjunctive Normal Form (DNF)

A propositional formula is in <u>disjunctive normal form (DNF)</u> if it is a disjunction of cubes.

A formula in disjunctive normal form is

- in negation normal form
- ⊥ if it contains no cubes
- easy to check whether it can be satisfied

Examples for CNF and DNF

Examples CNF

- T
- \blacksquare \bot \blacksquare $l_1 \lor l_2 \lor l_3$
- $\blacksquare a \qquad \blacksquare (a_1 \vee \neg a_2) \wedge (a_1 \vee b_2 \vee a_2) \wedge a_2$

 $l_1 \wedge l_2 \wedge l_3$

Examples DNF

- - \perp $l_1 \lor l_2 \lor l_3$
 - $a \qquad \qquad \blacksquare \quad (a_1 \land \neg a_2) \lor (a_1 \land b_2 \land a_2) \lor a_2$

Conventions

we use the following conventions unless stated otherwise:

- a, b, c, x, y, z denote variables and l, k denote literals
- ϕ, ψ, γ denote arbitrary formulas
- C, D denote clauses or cubes (clear from context)
- clauses are also written as sets

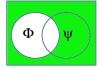
 - □ to add a literal l to clause C, we write $C \cup \{l\}$
 - \square to remove a literal *l* from clause *C*, we write $C \setminus \{l\}$
- formulas in CNF are also written as sets of sets
 - $((l_{11} \vee ... \vee l_{1m_1}) \wedge ... \wedge (l_{n1} \vee ... \vee l_{nm_n})) = \{\{l_{11}, ... l_{1m_1}\}, ..., \{l_{n1}, ... l_{nm_n}\}\}$
 - □ to add a clause C to CNF ϕ , we write $\phi \cup \{C\}$
 - \Box to remove a clause *C* from CNF ϕ , we write $\phi \setminus \{C\}$

Negation

- unary connective ¬ (operator with exactly one argument)
- negating the truth value of its argument
- **alternative notation:** $!\phi, \overline{\phi}, -\phi, NOT\phi$

	ϕ	$\neg \phi$
truth_table:	0	1
	1	0

<u>set</u> <u>view</u>:



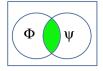
- If the atom "It rains." is true then the negation "It does not rain." is false.
- If atom a is true then $\neg a$ is false.
- If formula $((a \lor x) \land y)$ is true then formula $\neg ((a \lor x) \land y)$ is false.
- If formula $((b \to y) \land z)$ is true then formula $\neg((b \to y) \land z)$ is false.

Conjunction

- a conjunction is true iff both arguments are true
- **alternative notation for** $\phi \wedge \psi$: $\phi \& \psi$, $\phi \psi$, $\phi * \psi$, $\phi \cdot \psi$, $\phi AND\psi$
- For $(\phi_1 \wedge \ldots \wedge \phi_n)$ we also write $\bigwedge_{i=1}^n \phi_i$.

	ϕ	ψ	$\phi \wedge \psi$
	0	0	0
truth table:	0	1	0
	1	0	0
	1	1	1

set view:



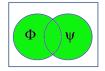
- $(a \land \neg a)$ is always false.
- $\top \land a$) is true if a is true. $(\bot \land \phi)$ is always false.
- If $(a \lor b)$ is true and $(\neg c \lor d)$ is true then $(a \lor b) \land (\neg c \lor d)$ is true.

Disjunction

- a disjunction is true iff at least one of the arguments is true
- **alternative notation for** $\phi \lor \psi$: $\phi | \psi, \phi + \psi, \phi OR \psi$
- For $(\phi_1 \vee \ldots \vee \phi_n)$ we also write $\bigvee_{i=1}^n \phi_i$.

	ϕ	ψ	$\phi \lor \psi$
	0	0	0
truth table:	0	1	1
	1	0	1
	1	1	1

<u>set</u> <u>view</u>:



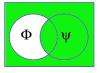
- \blacksquare $(a \lor \neg a)$ is always true.
- \top $(\top \lor a)$ is always true. $(\bot \lor a)$ is true if a is true.
- If $(a \to b)$ is true and $(\neg c \to d)$ then $(a \to b) \lor (\neg c \to d)$ is true.

Implication

- an implication is true iff the first argument is false or both arguments are true (Ex falsum quodlibet.)
- **a**lternative notation: $\phi \supset \psi, \phi$ IMPL ψ

	ϕ	ψ	$\phi \rightarrow \psi$
•	0	0	1
ruth table:	0	1	1
	1	0	0
	1	1	1

set view:



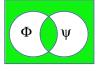
- If atom "It rains." is true and atom "The street is wet." is true then the statement "If it rains, the street is wet." is true.
- \blacksquare $(\bot \to a)$ and $(a \to a)$ are always true. $\top \to \phi$ is true if ϕ is true.

Equivalence

- true iff both subformulas have the same value
- **alternative notation:** $\phi = \psi, \phi \equiv \psi, \phi \sim \psi$

	ϕ	ψ	$\phi \leftrightarrow \psi$
	0	0	1
truth table:	0	1	0
	1	0	0
	1	1	1

<u>set</u> <u>view</u>:



- The formula $a \leftrightarrow a$ is always true.
- The formula $a \leftrightarrow b$ is true iff a is true and b is true or a is false and b is false.
- $\top \leftrightarrow \bot$ is never true.

The Logic Connectives at a Glance

							$\phi \rightarrow \psi$				
0	0	1	0	1	0	0	1	1	0	1	1
							1				
1	0	1	0	0	0	1	0	0	1	1	0
1	1	1	0	0	1	1	1	1	0	0	0

Exa	mpl	e:		
ϕ	ψ	$\neg(\neg\phi\wedge\neg\psi)$	$\neg \phi \lor \psi$	$(\phi \to \psi) \land (\psi \to \phi)$
0	0	0	1	1
0	1	1	1	0
1	0	1	0	0
1	1	1	1	1

Observation: connectives can be expressed by other connectives.

Other Connectives

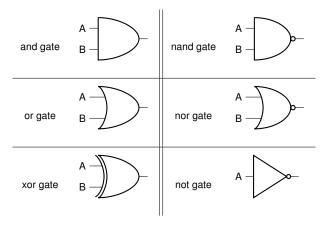
- there are 16 different functions for binary connectives
- \blacksquare so far, we had $\land, \lor, \leftrightarrow, \rightarrow$
- further connectives:

 - $\Box \phi \downarrow \psi$ (nor, Pierce Function)

ϕ	ψ	$\phi \leftrightarrow \psi$	$\phi \uparrow \psi$	$\phi\downarrow\psi$
0	0	0	1	1
0	1	1	1	0
1	0	1	1	0
1	1	0	0	0

- nor and nand can express every other boolean function (i.e., they are functional complete)
- often used for building digital circuits (like processors)

Propositional Formulas and Digital Circuits

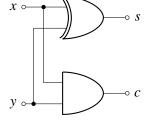


Example of a Digital Circuit: Half Adder

X	y	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

From the truth table, we see that

$$c \Leftrightarrow x \wedge y$$



and

$$s \Leftrightarrow x \oplus y$$
.

Different Notations

	Verilog									
operator	logic	circuits	C/C++/Java/C#	VHDL	Limboole					
1	Т	1	true	1	_					
0		0	false	0	_					
negation	$\neg \phi$	$ar{\phi}$ $-\phi$	$!\phi$	not ϕ	$!\phi$					
conjunction	$\phi \wedge \psi$	$\phi\psi$ $\phi\cdot\psi$	ϕ && ψ	ϕ and ψ	$\phi \& \psi$					
disjunction	$\phi \lor \psi$	$\phi + \psi$	$\phi \parallel \psi$	ϕ or ψ	$\phi \mid \psi$					
exclusive or	$\phi \leftrightarrow \psi$	$\phi \oplus \psi$	$\phi \mathrel{!=} \psi$	$\phi xor \psi$	_					
implication	$\phi \rightarrow \psi$	$\phi\supset\psi$	_	_	$\phi \rightarrow \psi$					
equivalence	$\phi \leftrightarrow \psi$	$\phi = \psi$	$\phi == \psi$	ϕ xnor ψ	$\phi < -> \psi$					

- $(a \lor (b \lor \neg c)) \leftrightarrow (\top \land ((a \to \neg b) \lor (c \lor a \lor b)))$
 - $(a + (b + \bar{c})) = c ((a \supset -b) + (0 + a + b))$
 - $a \parallel (a \parallel (b \parallel !c)) == (c \&\& ((! a \parallel ! b) \parallel (false \parallel a \parallel b)))$

All 16 Binary Functions

φ	ψ	constant 0	nor					xor	nand	and	equivalence		implication			or	constant 1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Assignment

- **a** variable can be assigned one of two values from the two-valued domain \mathbb{B} , where $\mathbb{B} = \{1, 0\}$
- the mapping $\nu : \mathcal{P} \to \mathbb{B}$ is called <u>assignment</u>, where \mathcal{P} is the set of atomic propositions
- we sometimes write an assignment ν as set V with $V \subseteq \mathcal{P} \cup \{\neg x | x \in \mathcal{P}\}$ such that
 - \square $x \in V$ iff v(x) = 1
 - $\neg x \in V \text{ iff } v(x) = \mathbf{0}$
- for n variables, there are 2^n assignments possible
- an assignment corresponds to one line in the truth table

Semantics of Propositional Logic

Given assignment $\nu: \mathcal{P} \to \mathbb{B}$, the interpretation $[.]_{\nu}: \mathcal{L} \to \mathbb{B}$ is defined by:

- $[\top]_{\nu} = 1, [\bot]_{\nu} = 0$
- if $x \in \mathcal{P}$ then $[x]_{\mathcal{V}} = \mathcal{V}(x)$
- $[\neg \phi]_{\nu} = \mathbf{1} \text{ iff } [\phi]_{\nu} = \mathbf{0}$
- $[\phi \lor \psi]_{\nu} = 1$ iff $[\phi]_{\nu} = 1$ or $[\psi]_{\nu} = 1$

What about the other connectives?

Satisfying/Falsifying Assigments

- An assignment is called
 - \square satisfying a formula ϕ iff $[\phi]_{\nu} = 1$.
 - \square falsifying a formula ϕ iff $[\phi]_{\nu} = \mathbf{0}$.
- **A** satisfying assignment for ϕ is a model of ϕ .
- A falsifying assignment for ϕ is a counter-model of ϕ .

Example:

For formula $((x \land y) \lor \neg z)$,

- \blacksquare { $\neg x, y, z$ } is a counter-model,
- \blacksquare {x, y, z} is a model.
- $\{x, y, \neg z\}$ is another model.

Properties of Propositional Formulas (1/3)

- formula ϕ is <u>satisfiable</u> iff there exists interpretation $[.]_{\nu}$ with $[\phi]_{\nu} = \mathbf{1}$ check with <u>limboole</u> -s
- formula ϕ is <u>valid</u> iff for all interpretations $[.]_{\nu}$ it holds that $[\phi]_{\nu} = \mathbf{1}$ check with limboole
- formula ϕ is <u>refutable</u> iff exists interpretation $[.]_v$ with $[\phi]_v = \mathbf{0}$ check with limboole
- formula ϕ is <u>unsatisfiable</u> iff $[\phi]_{\nu} = \mathbf{0}$ for all interpretations $[.]_{\nu}$ check with limboole -s

Properties of Propositional Formulas (2/3)

- a valid formula is called tautology
- an unsatisfiable formula is called contradiction

- ⊤ is valid.
- ⊥ is unsatisfiable.
- $(a \lor \neg b) \land (\neg a \lor b)$ is refutable.

- $a \rightarrow b$ is satisfiable.
- $a \leftrightarrow \neg a$ is a contradiction.
- $(a \lor \neg b) \land (\neg a \lor b)$ is satisfiable.

Properties of Propositional Formulas (3/3)

- A satisfiable formula is
 - possibly valid
 - possibly refutable
 - not unsatisfiable.
- A valid formula is
 - satisfiable
 - not refutable
 - not unsatisfiable.

- A refutable formula is
 - possibly satisfiable
 - possibly unsatisfiable
 - not valid.
- An unsatisfiable formula is
 - refutable
 - not valid
 - not satisfiable.

- **satisfiable**, but not valid: $a \leftrightarrow b$
- satisfiable and refutable: $(a \lor b) \land (\neg a \lor c)$
- valid, not refutable $\top \lor (a \land \neg a)$; not valid, refutable $(\bot \lor b)$

Further Connections between Formulas

- A formula ϕ is valid iff $\neg \phi$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\neg \phi$ is not valid.
- The formulas ϕ and ψ are equivalent iff $\phi \leftrightarrow \psi$ is valid.
- The formulas ϕ and ψ are equivalent iff $\neg(\phi \leftrightarrow \psi)$ is unsatisfiable.
- A formula ϕ is satisfiable iff $\phi \leftrightarrow \bot$.

Simple Algorithm for Satisfiability Checking

```
1 Algorithm: evaluate
    Data: formula φ
    Result: 1 iff \phi is satisfiable
   if \phi contains a variable x then
          pick v \in \{\top, \bot\}
 3
          /* replace x by truth constant v, evaluate resulting formula */
 4
          if evaluate(\phi[x|v]) then return 1;
 5
          else return evaluate(\phi[x|\overline{v}]);
 6
 7 else
          switch \phi do
 8
                case ⊤ do return 1;
 9
                case \perp do return 0;
10
                case \neg \psi do return! evaluate(\psi)
                                                                    /* true iff \psi is false */:
11
                case \psi' \wedge \psi'' do
12
                      return evaluate(\psi') && evaluate(\psi'')
                                                                        /* true iff both \psi' and \psi'' are true */
13
14
                case \psi' \vee \psi'' do
                      return evaluate(\psi') || evaluate(\psi'')
                                                                      /* true iff \psi' or \psi'' is true */
15
```


Semantic Equivalence

Two formula ϕ and ψ are semantic equivalent (written as $\phi \Leftrightarrow$ ψ) iff forall interpretations [.], it holds that $[\phi]_{\nu} = [\psi]_{\nu}$.

- ⇔ is a meta-symbol, i.e., it is not part of the language.
- natural language: if and only if (iff)
- $\phi \Leftrightarrow \psi$ iff $\phi \leftrightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.
- If ϕ and ψ are not equivalent, we write $\phi \Leftrightarrow \psi$.

- $\blacksquare a \lor \neg a \Leftrightarrow b \to \neg b$ $\blacksquare (a \lor b) \land \neg (a \lor b) \Leftrightarrow \bot$
- $a \lor \neg a \Leftrightarrow b \lor \neg b$ $a \Leftrightarrow (b \Leftrightarrow c) \Leftrightarrow ((a \Leftrightarrow b) \Leftrightarrow c$

Examples of Semantic Equivalences (1/2)

$\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$	$\phi \lor \psi \Leftrightarrow \psi \lor \phi$	commutativity
$\phi \wedge (\psi \wedge \gamma) \Leftrightarrow (\phi \wedge \psi) \wedge \gamma$	$\phi \lor (\psi \lor \gamma) \Leftrightarrow (\phi \lor \psi) \lor \gamma$	associativity
$\phi \wedge (\phi \vee \psi) \Leftrightarrow \phi$	$\phi \lor (\phi \land \psi) \Leftrightarrow \phi$	absorption
$\phi \wedge (\psi \vee \gamma) \Leftrightarrow (\phi \wedge \psi) \vee (\phi \wedge \gamma)$	$\phi \lor (\psi \land \gamma) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \gamma)$	distributivity
$\neg(\phi \land \psi) \Leftrightarrow \neg\phi \lor \neg\psi$	$\neg(\phi \lor \psi) \Leftrightarrow \neg\phi \land \neg\psi$	laws of De Morgan
$\phi \leftrightarrow \psi \Leftrightarrow (\phi \to \psi) \land (\psi \to \phi)$	$\phi \leftrightarrow \psi \Leftrightarrow (\phi \land \psi) \lor (\neg \phi \land \neg \psi)$	synt. equivalence

Examples of Semantic Equivalences (2/2)

$\phi \lor \psi \Leftrightarrow \neg \phi \to \psi$	$\phi \to \psi \Leftrightarrow \neg \psi \to \neg \phi$	implications
$\phi \land \neg \phi \Leftrightarrow \bot$	$\phi \lor \neg \phi \Leftrightarrow \top$	complement
$\neg\neg\phi \Leftrightarrow \phi$		double negation
$\phi \land \top \Leftrightarrow \phi$	$\phi \lor \bot \Leftrightarrow \phi$	neutrality
$\phi \lor \top \Leftrightarrow \top$	$\phi \land \bot \Leftrightarrow \bot$	
¬T⇔⊥	¬⊥⇔T	

Logic Entailment

Let $\phi_1, \dots \phi_n, \psi$ be propositional formulas. Then $\phi_1, \dots \phi_n$ entail ψ (written as $\phi_1, \ldots, \phi_n \models \psi$) iff $[\phi_1]_{\nu} = \mathbf{1}, \ldots [\phi_n]_{\nu} = \mathbf{1}$ implies that $[\psi]_{\nu} = 1$.

Informal meaning: True premises derive a true conclusion.

- |= is a meta-symbol, i.e., it is not part of the language.
- $\phi_1, \dots \phi_n \models \psi$ iff $(\phi_1 \land \dots \land \phi_n) \rightarrow \psi$ is valid, i.e., we can express semantics by means of syntactics.
- If $\phi_1, \ldots \phi_n$ do not entail ψ , we write $\phi_1, \ldots \phi_n \not\models \psi$.

$$\blacksquare a \models a \lor b$$

$$a \models a \lor b$$
 $\models a \lor \neg a$

$$a, a \rightarrow b \models b$$

$$a,b \models a \land b$$
 $\models a \land \neg a$

$$\blacksquare \not\models a \land \neg a$$

$$\blacksquare$$
 $\bot \models a \land \neg a$

Satisfiability Equivalence

Two formulas ϕ and ψ are <u>satisfiability-equivalent</u> (written as $\phi \Leftrightarrow_{SAT} \psi$) iff both formulas are satisfiable or both are contradictory.

- Satisfiability-equivalent formulas are not necessarily satisfied by the same assignments.
- Satisfiability equivalence is a weaker property than semantic equivalence.
- Often sufficient for simplification rules: If the complicated formula is satisfiable then also the simplified formula is satisfiable.

Example: Satisfiability Equivalence

positive pure literal elimination rule:

If a variable x occurs in a formula but $\neg x$ does not occur in the formula, then x can be substituted by \top . The resulting formula is satisfiability-equivalent.

- $\blacksquare x \Leftrightarrow_{SAT} \top$, but $x \not\Leftrightarrow \top$
- $(a \wedge b) \vee (\neg c \wedge a) \Leftrightarrow_{SAT} b \vee \neg c, \text{ but}$ $(a \wedge b) \vee (\neg c \wedge a) \Leftrightarrow b \vee \neg c$

Representing Functions as CNFs

Problem: Given the truth table of a Boolean function ϕ . How is the function represented in propositional logic?

Solution (in CNF):

- 1. Represent each assignment ν where ϕ has value ${\bf 0}$ as clause:
 - □ If variable x is **1** in v, add $\neg x$ to clause.
 - □ If variable x is **0** in y, add x to clause.
- Connect all clauses by conjunction.

a	b	С	φ	clauses
0	0	0	0	$a \lor b \lor c$
0	0	1	1	
0	1	0	1	
0	1	1	0	$a \lor \neg b \lor \neg c$
1	0	0	1	
1	0	1	0	$\neg a \lor b \lor \neg c$
1	1	0	0	$\neg a \lor \neg b \lor c$
1	1	1	1	
$\phi =$				
$(a \lor b \lor c) \land (a \lor \neg b \lor \neg c) \land$				
$(\neg a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor c)$				

Representing Functions as DNFs

Problem: Given the truth table of a Boolean function ϕ . How is the function represented in propositional logic?

Solution (in DNF):

- Represent each assignment ν where φ has value 1 as cube:
 - □ If variable x is **1** in v, add x to cube.
 - □ If variable x is **0** in v, add $\neg x$ to cube.
- Connect all cubes by disjunction.

а	b	c	φ	cubes
0	0	0	0	
0	0	1	1	$\neg a \wedge \neg b \wedge c$
0	1	0	1	$\neg a \wedge b \wedge \neg c$
0	1	1	0	
1	0	0	1	$a \wedge \neg b \wedge \neg c$
1	0	1	0	
1	1	0	0	
1	1	1	1	$a \wedge b \wedge c$
				•

$$\phi = (\neg a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (a \land \neg b \land \neg c) \lor (a \land b \land c)$$

Functional Completeness

- In propositional logic there are
 - \square 2 functions of arity 0 (\top, \bot)
 - 4 functions of arity 1 (e.g., not)
 - □ 16 functions of arity 2 (e.g., and, or, ...)
 - \square 2^{2ⁿ} functions of arity *n*.
- A function of arity n has 2^n different combinations of arguments (lines in the truth table).
- A functions maps its arguments either to 1 or 0.

A set of functions is called <u>functional complete</u> for propositional logic iff it is possible to express all other functions of propositional logic with functions from this set.

 $\{\neg, \land\}, \{\neg, \lor\}, \{\text{nand}\}\$ are functional complete.

