
LOGIC | SATISFIABILITY MODULO THEORIES

SMT BASICS
WS 2017/2018 (342.208)

Armin Biere biere@jku.at
Martina Seidl martina.seidl@jku.at

Institute for Formal Models and Verification
Johannes Kepler Universität Linz

Version 2017.1

Satisfiability Modulo Theories (SMT)

Example

f(x) 6= f(y) ∧ x + u = 3 ∧ v + y = 3 ∧ u = a[z] ∧ v = a[w] ∧ z = w

� formulas in first-order logic
usually without quantifiers, variables implicitly existentially quantified with sorted / typed symbols
including functions / constants / predicates are interpreted
SMT quantifier reasoning weaker than in first-order theorem proving (FO)
much richer language compared to propositional logic (SAT)

� no need to axiomatize “theories” using axioms with quantifiers
important theories are “built-in”: uninterpreted functions, equality, arithmetic, arrays, bit-vectors . . .

focus is on decidable theories, thus fully automatic procedures

� state-of-the-art SMT solvers essentially rely on SAT solvers
SAT solver enumerates solutions to a propositional skeleton
propositional and theory conflicts recorded as propositional clauses
DPLL(T), CDCL (T), read DPLL modulo theory T or CDCL modulo T

� SMT sweet spot between SAT and FO: many (industrial) applications
standardized language SMTLIB used in applications and competitions

1/16

Buggy Program

int middle (int x, int y, int z) {

int m = z;

if (y < z) {

if (x < y)

m = y;

else if (x < z)

m = y;

} else {

if (x > y)

m = y;

else if (x > z)

m = x;

}

return m;

}

this program is supposed to return the middle (median) of three numbers 2/16

Test Suite for Buggy Program
middle (1, 2, 3) = 2

middle (1, 3, 2) = 2

middle (2, 1, 3) = 1

middle (2, 3, 1) = 2

middle (3, 1, 2) = 2

middle (3, 2, 1) = 2

middle (1, 1, 1) = 1

middle (1, 1, 2) = 1

middle (1, 2, 1) = 1

middle (2, 1, 1) = 1

middle (1, 2, 2) = 2

middle (2, 1, 2) = 2

middle (2, 2, 1) = 2

� This black box test suite has to be generated manually.

� How to ensure that it covers all cases?

� Need to check outcome of each run individually and
determine correct result.

� Difficult for large programs.

� Better use specification and check it.

3/16

Specification for Middle

let a be an array of size 3 indexed from 0 to 2

a[i] = x ∧ a[j] = y ∧ a[k] = z

∧
a[0] ≤ a[1] ∧ a[1] ≤ a[2]

∧
i 6= j ∧ i 6= k ∧ j 6= k

→
m = a[1]

median obtained by sorting and taking middle element in the order
coming up with this specification is a manual process

4/16

Encoding of Middle Program in Logic
int m = z;

if (y < z) {

if (x < y)

m = y;

else if (x < z)

m = y;

} else {

if (x > y)

m = y;

else if (x > z)

m = x;

}

return m;

}

(y < z ∧ x < y → m = y)

∧
(y < z ∧ x ≥ y ∧ x < z → m = y)

∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z)

∧
(y ≥ z ∧ x > y → m = y)

∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x)

∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z)

this formula can be generated automatically by a compiler

5/16

Translating Checking of Specification as SMT Problem

let P be the encoding of the program, and S of the specification

program is correct if “P → S” is valid

program has a bug if “P → S” is invalid

program has a bug if negation of “P → S” is satisfiable (has a model)

program has a bug if “P ∧ ¬S” is satisfiable (has a model)

6/16

Checking Specification as SMT Problem Example

(y < z ∧ x < y → m = y) ∧
(y < z ∧ x ≥ y ∧ x < z → m = y) ∧
(y < z ∧ x ≥ y ∧ x ≥ z → m = z) ∧
(y ≥ z ∧ x > y → m = y) ∧
(y ≥ z ∧ x ≤ y ∧ x > z → m = x) ∧
(y ≥ z ∧ x ≤ y ∧ x ≤ z → m = z) ∧
a[i] = x ∧ a[j] = y ∧ a[k] = z ∧
a[0] ≤ a[1] ∧ a[1] ≤ a[2] ∧
i 6= j ∧ i 6= k ∧ j 6= k ∧
m 6= a[1]

7/16

Encoding with Linear Integer Arithmetic in SMTLIB2
(set-logic QF_AUFLIA)
(declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int) (declare-fun m () Int)
(assert (=> (and (< y z) (< x y)) (= m y)))
(assert (=> (and (< y z) (>= x y) (< x z)) (= m y))) ; fix by replacing last ’y’ by ’x’
(assert (=> (and (< y z) (>= x y) (>= x z)) (= m z)))
(assert (=> (and (>= y z) (> x y)) (= m y)))
(assert (=> (and (>= y z) (<= x y) (> x z)) (= m x)))
(assert (=> (and (>= y z) (<= x y) (<= x z)) (= m z)))
(declare-fun i () Int) (declare-fun j () Int) (declare-fun k () Int)
(declare-fun a () (Array Int Int))
(assert (and (<= 0 i) (<= i 2) (<= 0 j) (<= j 2) (<= 0 k) (<= k 2)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (<= (select a 0) (select a 1) (select a 2)))
(assert (distinct i j k))
(assert (distinct m (select a 1)))
(check-sat) (get-model) (exit)

8/16

Checking Middle Example with Z3
$ z3 middle-buggy.smt2 $ z3 middle-fixed.smt2
sat unsat
(model

(define-fun i () Int 1)
(define-fun a () (Array Int Int) (_ as-array k!0))
(define-fun j () Int 0)
(define-fun k () Int 2)
(define-fun m () Int 2281)
(define-fun z () Int 2283)
(define-fun y () Int 2281)
(define-fun x () Int 2282)
(define-fun k!0 ((x!1 Int)) Int

(ite (= x!1 2) 2283
(ite (= x!1 1) 2282
(ite (= x!1 0) 2281 2283)))) see also http://rise4fun.com

)
9/16

http://rise4fun.com

Encoding with Bit-Vector Logic in SMTLIB2

(set-logic QF_AUFBV)
(declare-fun x () (_ BitVec 32)) (declare-fun y () (_ BitVec 32))
(declare-fun z () (_ BitVec 32)) (declare-fun m () (_ BitVec 32))
(assert (=> (and (bvult y z) (bvult x y)) (= m y)))
(assert (=> (and (bvult y z) (bvuge x y) (bvult x z)) (= m y))) ; fix last ’y’->’x’
(assert (=> (and (bvult y z) (bvuge x y) (bvuge x z)) (= m z)))
(assert (=> (and (bvuge y z) (bvugt x y)) (= m y)))
(assert (=> (and (bvuge y z) (bvule x y) (bvugt x z)) (= m x)))
(assert (=> (and (bvuge y z) (bvule x y) (bvule x z)) (= m z)))
(declare-fun i ()(_ BitVec 2)) (declare-fun j ()(_ BitVec 2)) (declare-fun k ()(_ BitVec 2))
(declare-fun a ()(Array (_ BitVec 2) (_ BitVec 32)))
(assert (and (bvule #b00 i) (bvule i #b10) (bvule #b00 j) (bvule j #b10)))
(assert (and (bvule #b00 k) (bvule k #b10)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (bvule (select a #b00) (select a #b01)))
(assert (bvule (select a #b01) (select a #b10)))
(assert (distinct i j k)) (assert (distinct m (select a #b01)))
(check-sat) (get-model) (exit)

10/16

Checking Middle Example with Boolector

$ boolector -m middle32-buggy.smt2

sat

...

2 11001101100011110101101111001001 x

3 01101101100011110101101110000001 y

4 11101011000011110101100111010001 z

5 01101101100011110101101110000001 m

28 01 i

29 00 j

30 10 k

31[00] 01101101100011110101101110000001 a

31[01] 11001101100011110101101111001001 a

31[10] 11101011000011110101100111010001 a

$ boolector middle32-fixed.smt2

unsat

see also http://fmv.jku.at/boolector

11/16

http://fmv.jku.at/boolector

Theory of Linear Real Arithmetic (LRA)

� constants: integers, rationals, etc.

� predicates: equality =, disequality 6=, inequality ≤ (strict <) etc.

� functions: addition +, subtraction −, multiplication · by constant only

Example

z ≤ x− y ∧ x + 2 · y ≤ 5 ∧ 4 · z − 2 · x ≥ y

� we focus on conjunction of inequalities as in the example first

� equalities “=” can be replaced by two inequalities “≤”

� disequalities replaced by disjunction of strict inequalities

� combination with SAT allows arbitrary formulas (not just conjunctions)

� related to optimization problems solved in operation research (OR)

� OR algorithms are usually variants of the classic SIMPLEX algorithm

12/16

Fourier-Motzkin Elimination Procedure by Example

z ≤ x− y ∧ x+ 2 · y ≤ 5 ∧ 4 · z − 2 · x ≥ y

pick pivot variable, e.g. x, and isolate it on one side with coefficient 1

z + y ≤ x ∧ x ≤ 5− 2 · y ∧ 4 · z − y ≥ 2 · x
z + y ≤ x ∧ x ≤ 5− 2 · y ∧ 2 · z − 0.5 · y ≥ x

z + y ≤ x ∧ x ≤ 5− 2 · y ∧ x ≤ 2 · z − 0.5 · y (1)

eliminate x by adding A ≤ B for all inequalities A ≤ x and x ≤ B

z + y ≤ 5− 2 · y ∧ z + y ≤ 2 · z − 0.5 · y
z ≤ 5− 3 · y ∧ 1.5 · y ≤ z (2)

and same procedure with new pivot variable, e.g. z, and eliminate z

1.5 · y ≤ 5− 3 · y
y ≤ 10/9 (3)

(3) has (as one) solution y = 0 ∈ (−∞, 10/9] or y = 1 ∈ (−∞, 10/9]

(2) then allows z = 0 ∈ [0, 5] z = 2 ∈ [1.5, 2]

(1) then forces x = 0 forces x = 3 thus satisfiable
13/16

Theory of Uninterpreted Functions and Equality

� functions as in first-order (FO): sorted / typed without interpretation

� equality as single interpreted predicate
� congruence axiom ∀x, y : x = y → f(x) = f(y)

� similar variants for functions with multiple arguments
� always assumed in FO if equality is handled explicitly (interpreted)

� uninterpreted functions allow to abstract from concrete implementations
� in hardware (HW) verification abstract complex circuits (e.g. multiplier)
� in software (SW) verification abstract sub routine computation

� congruence closure algorithms using fast union-find data structures
� start with all terms (and sub-terms) in different equivalence classes
� if t1 = t2 is an asserted literal merge equivalence classes of t1 and t2

� for all elements of an equivalence class check congruence axiom

• let t1 and t2 be two terms in the same equivalence class
• if there are terms f(t1) and f(t2) merge their equivalence classes

� continue until the partition of terms in equivalence classes stabilizes
� if asserted disequality t1 6= t2 exists with t1, t2 in the same equivalence class

then unsatisfiable otherwise satisfiable

14/16

Congruence Closure By Example

assume flattened structure where all sub-terms are identified by variables

[x | y | t | u | v]

x = y︸ ︷︷ ︸
asserted literal x = y puts x and y in to the same equivalence class

∧ x = g(y) ∧ t = g(x) ∧ u = f(x, t) ∧ v = f(y, x) ∧ u 6= v

[x y | t | u | v]

x = y∧ x = g(y) ∧ t = g(x)︸ ︷︷ ︸
apply congruence axiom since x and y in same equivalence class

∧u = f(x, t) ∧ v = f(y, x) ∧ u 6= v

15/16

Congruence Closure By Example

[x y t | u | v]

x = y ∧ x = g(y) ∧ t = g(x)∧ u = f(x, t) ∧ v = f(y, x)︸ ︷︷ ︸
apply congruence axiom since y, x and t are all in same equivalence class

∧u 6= v

[x y t | u v]

x = y ∧ x = g(y) ∧ t = g(x) ∧ u = f(x, t) ∧ v = f(y, x)∧ u 6= v

u and v in the same equivalence class but u 6= v asserted
thus unsatisfiable

16/16

