
First Order Predicate Logic
Formal Reasoning

Wolfgang Schreiner and Wolfgang Windsteiger
Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 1/32

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at
http://www.risc.jku.at

What is Formal Reasoning?
I Problem: how to show that the statement {F1, . . . ,Fn} |= G is true?

I Is formula G true in every model in which the F1, . . . ,Fn are true?
I F1, . . . ,Fn: the “axioms” that characterize the considered models.
I G : a “conjecture” that might be also true in all these models.
I If the conjecture is indeed true, then G is actually a “theorem”.
I Since there are infinitely models, how to ensure that G is a theorem?

I Solution: derive the “sequent” F1, . . . ,Fn ` G by a proof calculus.
I “Sequent”: a sequence F1, . . . ,Fn ` G of formulas with “assumptions”

F1, . . . ,Fn and “goal” G .
I Proof calculus: a set of “inference rules” that derive sequents.
I The inference rules are “sound”: a sequence F1, . . . ,Fn ` G can only

be derived, if {F1, . . . ,Fn} |= G is true.
I The inference rules are “syntactic”: they only depend on the syntactic

structure of the formulas (not their semantics).
I Proof: a “proof” is a derivation of a sequent F1, . . . ,Fn ` G .

I Since inference rule are syntactic, the correctness of a proof for goal G
can be mechanically checked (by a human or a computer).

I A correct proof of goal G turns it from a conjecture to a theorem.

Formal reasoning is the demonstration of truth by checkable proofs.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 2/32

http://www.risc.jku.at

Formal Reasoning: How to Construct a Proof?
We call sequents S1, . . . ,Sn, and S also proof situations.

?

6

Forward interpretation: Backward interpretation:

A proof starts from trivial proof
situations (obviously true),

A proof starts from the goal to
be proved,

progresses step-by-step

until it reaches the final situation,
where the goal is proved.

until it reaches trivial proof situ-
ations (obviously true).

Individual proof steps are guided by inference rules, which are denoted as

6forward S1 . . . Sn
S?

backward

Forward interpretation: Backward interpretation:
If S1, . . . ,Sn can be proved,
then also S can be proved.

In order to prove S,
we need to prove S1, . . . ,Sn.

S1, . . . ,Sn: the premises of the inference rule; S: its conclusion.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 3/32

http://www.risc.jku.at

Example

S,S1, . . . ,S6: sequents. Consider the following inference rules:

S2 S3R1: S1
R2: S4

S1R3: S
R4: S5

S4 S5R5: S2
R6: S6

S6R7: S3

We want to prove S.

R2: S4
R4: S5R5: S2

R6: S6R7: S3R1: S1R3: S

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 4/32

http://www.risc.jku.at

Proof Generation vs. Proof Presentation

Proof generation: start with sequent to be proved, then work backwards.

Read and apply rules from bottom to top.

6R2: S4
R4: S5R5: S2

R6: S6R7: S3R1: S1R3: S
Backward style proof presentation: In order to prove S we have to prove,
by R3, S1. For this, by R1, we have to

1. prove S2: by R5 we have to prove S4 and S5, which are guaranteed by
R2 and R4, respectively. Now we still have to

2. prove S3: by R7 it is sufficient to prove S6, which we know from R6.
QED (“quod erat demonstrandum”, “what was to be proved”).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 5/32

http://www.risc.jku.at

Proof Generation vs. Proof Presentation

Proof presentation: often done in forward reasoning style, i.e. start with
known facts and work forward until the sequent to be proved is reached.

Read and apply rules from top to bottom.

?

R2: S4
R4: S5R5: S2

R6: S6R7: S3R1: S1R3: S
Forward style proof presentation: We know S4 and S5 can be proved,
hence by R5, S2 can be proved. Furthermore we know that S6 can be
proved, hence by R7, also S3 can be proved. Together with S2, by R1, we
know that S1 can be proved, and therefore, by R3, also S. QED.

Proofs are always generated backwards (even if they are later presented in
the forward style).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 6/32

http://www.risc.jku.at

Proof Trees

A formal proof can be seen as a tree, where

1. every node is a sequent,
2. if S1, . . . ,Sn are the children nodes of a node S, then there must be

an inference rule of the form S1 . . . Sn
S .

Special case n = 0: A leaf has 0 children, hence

for every leaf S in the tree there must be a rule S .

A formal proof of S is a proof tree with root S.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 7/32

http://www.risc.jku.at

A Sketch of a Simple Proof Generation Procedure

Input: S
Output: P such that P is a formal proof of S.

P := tree containing only the root node S

Q := {S} // the leaves of the tree, i.e., the still “open” proof situations

while Q not empty
choose a rule S1 . . . Sn

s such that s ∈ Q

replace s in Q by S1, . . . ,Sn

add S1, . . . ,Sn as children nodes of s in P
return P

Depending on 1) the rules and 2) the choice of the rule in the loop, the
procedure might not terminate or might not give a complete proof.

Proving is the art of selecting the “right” rule applications to elaborate,
from the desired goal as a root, a complete proof tree.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 8/32

http://www.risc.jku.at

Inference Rules: Patterns and Matching
I Inference rules: schematic “patterns” to be “matched” against

concrete proof situations.
K1 . . . ` G1 . . . Kn . . . ` Gnname:

K . . . ` G
I n premises and one conclusion (special case n = 0: no premises).

I Premises/conclusions: “patterns” of sequents with schematic
variables to be matched by concrete phrases:
I A “sequence variable” (K . . .): an arbitrary sequence of formulas.
I A “formula variable” (F , G , etc.): an arbitrary formula,
I A “term variable” (t, u, etc.): an arbitrary term.

I Example: K . . . ` G1 ∧G2 denotes a sequent whose goal is an arbitrary
conjunction whose subformulas are denoted by variables G1 and G2.

I Order of assumptions: does not matter.
I Example: the sequent K . . . ,F1∧F2 ` G indicates that somewhere

among the assumptions a conjunction occurs.
I Multiple occurrences of the same variable: denote the same

expression everywhere in the inference rule.
I The sequent K . . . ,F ∧G ` G indicates that among the assumptions a

conjunction occurs whose second subformula is identical to the goal.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 9/32

http://www.risc.jku.at

Example: Patterns and Matching

Let a be a constant, f ,g unary function symbols, p,q, r ,s unary predicate
symbols, t a schematic term variable.
Consider the following inference rules:

` r(t) ` s(g(t))
R1: ` r(f (t))

R2: ` p(a)
` r(f(t))

R3: ` s(t)
R4: ` q(a)

` p(t) ` q(t)
R5: ` r(t)

R6: ` s(f (a))
` s(f (t))

R7: ` s(g(t))

We want to prove ` s(a).

R2: ` p(a)
R4: ` q(a)

R5: ` r(a)

R6: ` s(f (a))
R7: ` s(g(a))

R1: ` r(f (a))
R3: ` s(a)

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 10/32

http://www.risc.jku.at

Proof Rules for Predicate Logic

One could give a (minimal) set of inference rules for first order predicate
logic, which can be shown to be sound and complete, i.e.

1. every formula, which has a formal proof, is also semantically true and
2. every semantically true formula has a formal proof.

 e.g. sequent calculus, Gentzen calculus, natural deduction calculus, etc.

However, we give proof rules that help in practical proving of mathematical
statements and checking of given proofs (differences lie in details only).

We distinguish:

I propositional rules: closing rules, structural rules, connective rules.
I predicate logic rules: equality rules, quantifier rules.

For every logical connective and every standard quantifier, we give at least
one rule, where the connective or quantifier occurs as the outermost
symbol in the goal or one of the assumptions.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 11/32

http://www.risc.jku.at

Closing Rules
For closing a proof, we need inference rules without premises.

I If the goal is among the assumptions, the goal can be proved.
GoalAssum: K . . . ,G ` G

Our goal G occurs among our assumptions.

I If the assumptions are contradictory, any goal can be proved.
ContrAssum: K . . . ,A,¬A ` G

From our assumptions we know A but also ¬A; we have therefore
a contradiction and are done with proving G.

I If the assumptions include “false”, any goal can be proved.
FalseAssum: K . . . ,⊥ ` G

Our assumptions include “false”; we are therefore done with
proving G.

The leaves of a proof tree are constructed by application of these rules.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 12/32

http://www.risc.jku.at

Structural Rules

I Any assumption may be dropped:
K . . . ` GDrop:

K . . . ,A ` G
I Any assumption may be added, if it is also proved (the “cut rule”):

K . . . ` A K . . . ,A ` G
Cut: K . . . ` G

We have to prove G. First we prove A: Now we prove G
with the additional assumption A.

I Rather than proving G , we may assume ¬G and derive a
contradiction (an “indirect proof”):

K . . . ,¬G ` ⊥
Indirect: K . . . ` G

We have to prove G. Thus we may assume ¬G and derive a
contradiction.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 13/32

http://www.risc.jku.at

Connective Rules: Negation

I Prove a negation as goal:

K . . . ,G ` ⊥
P-¬: K . . . ` ¬G

We have to prove ¬G. Thus we may assume G and derive a
contradiction.

I Use a negation as an assumption:

K . . . ,¬G ` A
A-¬: K . . . ,¬A ` G

We know ¬A and have to prove G. Thus we may assume ¬G
and prove A.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 14/32

http://www.risc.jku.at

Example

√
2 ∈Q, . . . ` ⊥

P-¬:
. . . `

√
2 6∈Q

We have to prove that
√
2 is not rational. We do a proof by

contradiction, hence, we assume that
√
2 was rational and derive

a contradiction.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 15/32

http://www.risc.jku.at

Connective Rules: Conjunction

I Prove a conjunction as a goal:
K . . . ` F1 K . . . ` F2P-∧: K . . . ` F1∧F2

We have to prove F1∧F2. First we prove F1: Now we prove
F2:

I Use a conjunction as an assumption:
K . . . ,F1,F2 ` G

A-∧: K . . . ,F1∧F2 ` G

We know F1∧F2, therefore we know F1 and we know F2.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 16/32

http://www.risc.jku.at

Connective Rules: Disjunction

I Prove a disjunction as a goal:
K . . . ,¬F1 ` F2

P-∨: K . . . ` F1∨F2
K . . . ,¬F2 ` F1

P-∨: K . . . ` F1∨F2
We have to prove F1∨F2. Thus we may assume ¬F1 and prove
¬F2. (or: Thus we may assume ¬F2 and prove ¬F1).

I Use a disjunction as an assumption (“proof by cases”):
K . . . ,F1 ` G K . . . ,F2 ` G

A-∨: K . . . ,F1∨F2 ` G

We know F1∨F2. We proceed by case distinction. Case F1:
Case F2:

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 17/32

http://www.risc.jku.at

Example

P1
even(m) ` G

P2
odd(m) ` G

A-∨:
even(m)∨odd(m) ` G

We already know that m is even or m is odd. Thus, we can
distinguish the two cases:
1. m is even: . . . (insert proof P1 here)
2. m is odd: . . . (insert proof P2 here)

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 18/32

http://www.risc.jku.at

Connective Rules: Implication
I Prove implication as a goal.

K . . . ,F1 ` F2
P-→: K . . . ` F1→ F2

We have to prove F1→ F2. Thus we may assume F1 and prove
F2.

I Use an implication as an assumption:
K . . . ` F1 K . . . ,F2 ` G

A-→: K . . . ,F1→ F2 ` G
We know F1→ F2. First we prove F1: Now we know F2.

I Often used instead: “modus ponens” and “modus tollens”
K . . . ,F1,F2 ` G

MP: K . . . ,F1→ F2,F1 ` G
We know F1→ F2 and we know F1. Therefore we know F2.

K . . . ,¬F2,¬F1 ` G
MT: K . . . ,F1→ F2,¬F2 ` G

We know F1→ F2 and we know ¬F2. Therefore we know ¬F1.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 19/32

http://www.risc.jku.at

Example

Prove ((A→ (B∨C))∧¬C)→ (A→ B),

where A,B, and C are abbreviations for complex predicate logic formulas.

Develop proof tree top-down with root on top (convenient in practice).

` ((A→ (B∨C))∧¬C)→ (A→ B)
P-→: ↓

(A→ (B∨C))∧¬C ` A→ B
A-∧:

A→ (B∨C),¬C ` A→ B
P-→:

A→ (B∨C),¬C ,A ` B
A-→:

. . . ,A ` A
GoalAssum:

¬C ,A,B∨C ` B
A-∨:

. . . ,B ` B
GoalAssum:

. . . ,¬C ,C ` B
ContrAssum:

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 20/32

http://www.risc.jku.at

Connective Rules: Equivalence
I Prove equivalence as a goal:

K . . . ` F1→ F2 K . . . ` F2→ F1P-↔: K . . . ` F1↔ F2
We have to prove F1↔ F2. First we prove F1→ F2: Now
we prove F2→ F1:

I Use equivalence as an assumption (“substitution”):

K . . . [F2/F1],F1↔ F2 ` G
A-↔: K . . . ,F1↔ F2 ` G

K . . . ,F1↔ F2 ` G [F2/F1]
A-↔: K . . . ,F1↔ F2 ` G

K . . . [F1/F2],F1↔ F2 ` G
A-↔: K . . . ,F1↔ F2 ` G

K . . . ,F1↔ F2 ` G [F1/F2]
A-↔: K . . . ,F1↔ F2 ` G

I Γ[F2/F1]: replace in formula(s) Γ some occurrence of F1 by F2.

We know F1↔ F2 and we know (for example) ¬F2∧F3. Therefore
we know ¬F1∧F3.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 21/32

http://www.risc.jku.at

Equality Rules

I Prove an equality as a goal:
P-=: K . . . ` t = t

We have to prove t = t and are therefore done.

I Use an equality as assumption (“substitution”):

K . . . [t2/t1], t1 = t2 ` G
A-=: K . . . , t1 = t2 ` G

K . . . , t1 = t2 ` G [t2/t1]
A-=: K . . . , t1 = t2 ` G

K . . . [t1/t2], t1 = t2 ` G
A-=: K . . . , t1 = t2 ` G

K . . . , t1 = t2 ` G [t1/t2]
A-=: K . . . , t1 = t2 ` G

I Γ[t2/t1]: replace in formula(s) Γ some occurrence of t1 by t2.

We know t1 = t2 and we know (for example) p(a, f (t1)). Therefore
we know p(a, f (t2)).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 22/32

http://www.risc.jku.at

Example

. . . ,even(m),n = m2 ` even(m2)
A-=:

. . . ,even(m),n = m2 ` even(n)

We have to prove that n is even. Since we know n = m2, it
suffices to prove that m2 is even.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 23/32

http://www.risc.jku.at

Quantifier Rules: Universal Quantifier
I Prove universally quantified formula as a goal (“skolemization”).

K . . . ` F [x/x]
P-∀: if x does not occur in K . . . ,F

K . . . ` (∀x : F)
We have to prove (∀x : p(x , f (x))). We take arbitrary but fixed
x and prove p(x , f (x)).

I “fixed”: “Skolem constant” x in contrast to variable x .
I “arbitrary”: x is a new constant about which nothing is known (it

does not appear anywhere else in the proof situation).
I Use universally quantified formula as an assumption (“instantiation”):

K . . . ,(∀x : F),F [t/x] ` G
A-∀:

K . . . ,(∀x : F) ` G
We know (∀x : p(x , f (x))). Thus we know (for x := a) p(a, f (a))
and (for x := g(a)) p(g(a), f (g(a)).

I (∀x : F) stays in the assumptions and can be instantiated again.
I A “knowlege generating engine” that can be applied arbitrarily often.
I The problem is to find suitable t that lets the proof make progress.
I If an unsuitable t is chosen, the additional knowledge does not help.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 24/32

http://www.risc.jku.at

Example

. . . ` even(n)→ even(n2)
P-∀:

. . . ` (∀n : even(n)→ even(n2))

In order to prove that the square of any even number n is again
even, we take an arbitrary but fixed natural number n and show
even(n)→ even(n2).

. . . ,(∀n : even(n)→ even(n2)),even(m)→ even(m2) ` . . .
A-∀:

. . . ,(∀n : even(n)→ even(n2)) ` . . .

We know that the square of any even number is again even.
Hence, this holds for a particular number m also, i.e. if m is even
then also m2 must be even.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 25/32

http://www.risc.jku.at

Quantifier Rules: Existential Quantifier
I Prove an existentially quantified formula as a goal (“instantiation”):

K . . . ` F [t/x]
P-∃:

K . . . ` (∃x : F)

We have to prove (∃x : p(x , f (x))). We prove (for x := g(a))
p(g(a), f (g(a))).

I The problem is to find a “witness term” t that lets the proof succeed.
I If an unsuitable t is chosen, the proof fails.

I Use existentially quantified formula as an assumption
(“skolemization”):

K . . . ,F [x/x] ` G
A-∃: if x does not occur in K . . . ,F ,G

K . . . ,(∃x : F) ` G

We know ∃x : p(x , f (x)). Thus we know p(x , f (x)) for some x.

I x is an “arbitrary but fixed” Skolem constant.
I (∃x : F) disappears from assumptions and cannot be skolemized again.
I A “knowlege generating engine” that can be applied only once.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 26/32

http://www.risc.jku.at

Example

. . . ` 2 ·2a = 4aP-∃:

. . . ` ∃m : 2m = 4a

We have to prove that there exists an m with 2m = 4a. We prove
(for m := 2a) 2 ·2a = 4a.

. . . , m2

n2 = 2 ` . . .
A-∃:

. . . ,∃m,n : m2

n2 = 2 ` . . .

We know there exist m and n such that m2

n2 = 2. Thus we know
m2

n2 = 2 for some m and n.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 27/32

http://www.risc.jku.at

Example: A Quantifier Proof
` (∃x : ∀y : p(x ,y))→ (∀y : ∃x : p(x ,y))

P-→: ↓
∃x : ∀y : p(x ,y) ` ∀y : ∃x : p(x ,y)

P-∀:
∃x : ∀y : p(x ,y) ` ∃x : p(x ,y)

A-∃:
∀y : p(x ,y) ` ∃x : p(x ,y)

A-∀:
∀y : p(x ,y),p(x ,y) ` ∃x : p(x ,y)

P-∃:
∀y : p(x ,y),p(x ,y) ` p(x ,y)

GoalAssum:

We prove

∃x : ∀y : p(x ,y))→ (∀y : ∃x : p(x ,y)) (a)

We assume

∃x : ∀y : p(x ,y) (1)

and prove

∀y : ∃x : p(x ,y) (b)

We take arbitrary but fixed y and prove

∃x : p(x ,y) (c)

From (1), we know (2) ∀y : p(x ,y) for some x . From (2), we know (for y := y)
(3) p(x ,y). We prove (c) for x := x which we know from (3). QED.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 28/32

http://www.risc.jku.at

Example: Another Quantifier Proof
` ((∃x : p(x))∧ (∀x : p(x)→∃y : q(x ,y)))→∃x ,y : q(x ,y)

P-→: ↓
(∃x : p(x))∧ (∀x : p(x)→∃y : q(x ,y)) ` ∃x ,y : q(x ,y)

A-∧:
∃x : p(x),∀x : p(x)→∃y : q(x ,y) ` ∃x ,y : q(x ,y)

A-∃:
p(x),∀x : p(x)→∃y : q(x ,y) ` ∃x ,y : q(x ,y)

A-∀, Drop:
p(x),p(x)→∃y : q(x ,y) ` ∃x ,y : q(x ,y)

MP,Drop:
∃y : q(x ,y) ` ∃x ,y : q(x ,y)

A-∃:
q(x ,y) ` ∃x ,y : q(x ,y)

P-∃:
q(x ,y) ` q(x ,y)

GoalAssum:

We prove

((∃x : p(x))∧ (∀x : p(x)→∃y : q(x ,y)))→∃x ,y : q(x ,y) (a)

We assume

(∃x : p(x))∧ (∀x : p(x)→∃y : q(x ,y)) (1)

and show

∃x ,y : q(x ,y) (b)

From (1), we know (2) (∃x : p(x)) and (3) (∀x : p(x)→∃y : q(x ,y)). From (2), we
know (4) p(x) for some x . From (3), we know (for x := x) (5) (p(x)→∃y : q(x ,y)).
From (4) and (5), we know (6) ∃y : q(x ,y). From (6), we know (7) q(x ,y) for some y .
We prove (b) for x := x and y := y which we know from (7). QED.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 29/32

http://www.risc.jku.at

Example: A Quantifier Proof with Branches
`
(
(p(a)∨q(b))∧ (∀x : p(x)→ r(x))∧ (∀x : q(x)→ r(f (x)))

)
→∃x : r(x)

P-→: ↓
(p(a)∨q(b))∧ (∀x : p(x)→ r(x))∧ (∀x : q(x)→ r(f (x))) ` ∃x : r(x)

A-∧:
p(a)∨q(b),(∀x : p(x)→ r(x)) ,(∀x : q(x)→ r(f (x))) ` ∃x : r(x)

A-∨, Drop:
p(a),(∀x : p(x)→ r(x)) ` ∃x : r(x)

A-∀, Drop:
p(a),p(a)→ r(a) ` ∃x : r(x)

MP:
p(a), r(a) ` ∃x : r(x)

P-∃:
p(a), r(a) ` r(a)

GoalAssum:

q(b),(∀x : q(x)→ r(f (x))) ` ∃x : r(x)
A-∀, Drop:

q(b),q(b)→ r(f (b)) ` ∃x : r(x)
MP:

q(b), r(f (b)) ` ∃x : r(x)
P-∃:

q(b), r(f (b)) ` r(f (b))
GoalAssum:

We prove(
(p(a)∨q(b))∧ (∀x : p(x)→ r(x))∧ (∀x : q(x)→ r(f (x)))

)
→∃x : r(x) (a)

We assume
(p(a)∨q(b))∧ (∀x : p(x)→ r(x))∧ (∀x : q(x)→ r(f (x))) (1)

and prove
∃x : r(x) (b)

From (1), we know (2) (p(a)∨q(b)), (3) (∀x : p(x)→ r(x)), (4) (∀x : q(x)→ r(f (x))).
From (2), we have two cases:
I Case (5) p(a): From (3), we know (for x := a) (6) p(a)→ r(a). From (5) and (6),

we know (7) r(a) and therefore (b) for x := a.
I Case (8) q(b): From (4), we know (for x := b) (9) q(b)→ r(f (b)). From (8) and

(9), we know (10) r(f (b)) and therefore (b) for x := f (b). QED.
Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 30/32

http://www.risc.jku.at

Proving Strategies
I Proving: partially “art” but mostly “craft”.

I Most of a proof is guided by the structure of proof situations.
I Only in a few places really “creativity” or “ingenuity” is required.
I Basic strategy: first “spawn” proof tree by the goal-oriented rules and

then “close” the branches of the tree by the assumption-oriented rules.
I First: apply only the “goal-oriented” rules.

I Decompose the complex goal into one or more simpler goals.
I Stop when goals become atomic or existentially quantified.

I Then: apply the “assumption-oriented” rules.
I Decompose complex assumptions into simpler ones.
I Skolemize existentially quantified assumptions.
I Instantiate universally quantified assumptions.

I Ultimately: “close the gap” between assumptions and goal.
I How can you derive an atomic goal as an assumption?
I How can you instantiate an existentially quantified goal such that the

instantiated body of the formula appears as an assumption?
I Try to “match” assumptions and goal by the inference rules.

By considering proving as a “syntactic” process, already a major part of a
proof can be elaborated (possibly even completed).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 31/32

http://www.risc.jku.at

Mathematical Proofs
Mathematical proofs are typically written in a much more informal style.

I Do not mention all steps.
I Combine several steps into one.
I Use for Skolem constant name of variable itself.
I Use hidden assumptions. . . .

Theorem: Suppose a divides b if and only if, for some t ∈ N, b = t ·a.
Then, if a divides b it also divides every multiple of b.

Proof: Assume a,b,s ∈ N arbitrary but fixed such that a divides b. We
show that a divides s ·b, i.e. ∃t ∈ N : s ·b = t ·a. Since a divides b, we
know b = t ·a for some t ∈N, thus, we have to find t ∈N s.t. s · t ·a = t ·a.
Let now t := s · t ∈ N, we have to show s · t ·a = s · t ·a. QED.

Every sentence in the proof is justified by one or more proof rules. Trivial
steps (e.g. split conjunction in assumptions) are not mentioned explicitly.

A mathematical proof is an easily readable “sketch” that just gives the
essential information to reconstruct a corresponding formal proof.

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc.jku.at 32/32

http://www.risc.jku.at

