First Order Predicate Logic Semantics

Wolfgang Schreiner and Wolfgang Windsteiger Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU), Linz, Austria http://www.risc.jku.at

Semantics

The meaning of a predicate logic formula depends on the following entities.

- A non-empty domain D
 - The universe about which the formula talks.

 $D = \mathbb{N}.$

- An interpretation I of all function and predicate symbols
 - Constants: For every constant c, l(c) denotes an element of D, i.e., $l(c) \in D$.
 - ▶ Functions: For every function symbol f with arity n, l(f) denotes an n-ary function on D, i.e., $l(f) : D^n \to D$.
 - ▶ Predicates: For every predicate symbol *p* with arity *n*, I(p) denotes an *n*-ary predicate (relation) on *D*, i.e., $I(p) \subseteq D^n$.

 $I = [0 \mapsto zero, + \mapsto add, < \mapsto less-than, \ldots]$

- An assignment $a: Var \rightarrow D$
 - A function that maps every (free) variable x to a value a(x) in D.

$$a = [x \mapsto 1, y \mapsto 0, z \mapsto 3, \ldots]$$

The pair M = (D, I) is also called a *structure*.

The Informal Semantics of Terms and Formulas

- The meaning of a term is an object in the domain.
 - Meaning of a variable is given by the assignment.
 - Meaning of a constant is given by the interpretation.
 - Meaning of $f(t_1, ..., t_n)$ is determined by applying the interpretation of f to the meaning of the t_i .
- The meaning of a formula is true or false.
 - \blacktriangleright Meaning of \top is true, meaning of \bot is false.
 - Meaning of $p(t_1,...,t_n)$ is determined by applying the interpretation of p to the meaning of the t_i .
 - Special case with fixed interpretation: meaning of $t_1 = t_2$ is true, iff the meanings of t_1 and t_2 are identical.
 - Meaning of logical connectives is determined by applying the truth tables to the meaning of the constituent subformulas.
 - ▶ Meaning of $\forall x : F$ is true iff the meaning of *F* is true for all possible assignments for the free variable *x*.
 - Meaning of $\exists x : F$ is true iff the meaning of F is true for at least one assignment for the free variable x.

The Formal Semantics of Terms

$$D, I, a \longrightarrow \llbracket t \rrbracket \longrightarrow d \in D$$

- Term semantics $\llbracket t \rrbracket_a^{D,I} \in D$
 - Given D, I, a, the semantics of term t is a value in D.
 - This value is defined by structural induction on t.

$$t ::= x \mid c \mid f(t_1, \ldots, t_n)$$

- $\blacktriangleright [[x]]_a^{D,I} := a(x)$
 - The semantics of a variable is the value given by the assignment.
- $\bullet \ \llbracket c \rrbracket_a^{D,I} := I(c)$
 - The semantics of a constant is the value given by the interpretation.
- $[f(t_1,...,t_n)]_a^{D,I} := I(f)([[t_1]]_a^{D,I},...,[[t_n]]_a^{D,I})$
 - The semantics of a function application is the result of the interpretation of the function symbol applied to the values of the argument terms.

The recursive definition of a function evaluating a term.

Example

$$D = \mathbb{N} = \{ \text{zero, one, two, three, ...} \}$$

$$a = [x \mapsto \text{one, } y \mapsto \text{two, ...}]$$

$$I = [0 \mapsto \text{zero, } + \mapsto \text{add, ...}]$$

$$[x + (y + 0)]_{a}^{D,I} = add([x]_{a}^{D,I}, [y + 0]_{a}^{D,I})$$

$$= add(a(x), [y + 0]_{a}^{D,I})$$

$$= add(one, [y + 0]_{a}^{D,I})$$

$$= add(one, add([y]_{a}^{D,I}, [0]_{a}^{D,I}))$$

$$= add(one, add(a(y), I(0))$$

$$= add(one, add(two, zero))$$

$$= add(one, two)$$

$$= three$$

The meaning of the term with the "usual" interpretation.

Example

$$D = \mathcal{P}(\mathbb{N}) = \{\emptyset, \{zero\}, \{one\}, \{two\}, \dots, \{zero, one\}, \dots\}$$

$$a = [x \mapsto \{one\}, y \mapsto \{two\}, \dots]$$

$$I = [0 \mapsto \emptyset, + \mapsto union, \dots]$$

$$\begin{split} \llbracket x + (y+0) \rrbracket_{a}^{D,I} &= union(\llbracket x \rrbracket_{a}^{D,I}, \llbracket y+0 \rrbracket_{a}^{D,I}) \\ &= union(a(x), \llbracket y+0 \rrbracket_{a}^{D,I}) \\ &= union(\{one\}, \llbracket y+0 \rrbracket_{a}^{D,I}) \\ &= union(\{one\}, union(\llbracket y \rrbracket_{a}^{D,I}, \llbracket 0 \rrbracket_{a}^{D,I})) \\ &= union(\{one\}, union(a(y), I(0)) \\ &= union(\{one\}, union(\{two\}, emptyset)) \\ &= union(\{one\}, \{two\}) \\ &= \{one, two\} \end{split}$$

The meaning of the term with another interpretation.

The Formal Semantics of Formulas

- ▶ Formula semantics $\llbracket F \rrbracket_a^{D,l} \in \{true, false\}$
 - ▶ Given *D*, *I*, *a*, the semantics of term *T* is a truth value.
 - This value is defined by structural induction on F.

$$F := \top \mid \perp \mid p(t_1, \dots, t_n)$$

$$\mid (\neg F) \mid (F_1 \land F_2) \mid (F_1 \lor F_2) \mid (F_1 \to F_2) \mid (F_1 \leftrightarrow F_2)$$

$$\mid (\forall x : F) \mid (\exists x : F) \mid \dots$$

- $\blacktriangleright \ \llbracket \top \rrbracket_a^{D,I} := true, \llbracket \bot \rrbracket_a^{D,I} := false$
- $[\![p(t_1,...,t_n)]\!]_a^{D,l} := l(p)([\![t_1]\!]_a^{D,l},...,[\![t_n]\!]_a^{D,l})$
 - The semantics of a atomic formula is the result of the interpretation of the predicate symbol applied to the values of the argument terms.

And now for the non-atomic formulas.

Wolfgang Schreiner and Wolfgang Windsteiger

The Semantics of Propositional Formulas

$$\left[\neg F \right]_{a}^{D,l} := \begin{cases} true & \text{if } \left[F \right] \right]_{a}^{D,l} = false \\ false & \text{else} \end{cases}$$

$$\left[\left[F_{1} \land F_{2} \right] \right]_{a}^{D,l} := \begin{cases} true & \text{if } \left[F_{1} \right] \right]_{a}^{D,l} = \left[\left[F_{2} \right] \right]_{a}^{D,l} = true \\ false & \text{else} \end{cases}$$

$$\left[\left[F_{1} \lor F_{2} \right] \right]_{a}^{D,l} := \begin{cases} false & \text{if } \left[F_{1} \right] \right]_{a}^{D,l} = \left[\left[F_{2} \right] \right]_{a}^{D,l} = false \\ true & \text{else} \end{cases}$$

$$\left[\left[F_{1} \to F_{2} \right] \right]_{a}^{D,l} := \begin{cases} false & \text{if } \left[F_{1} \right] \right]_{a}^{D,l} = true \text{ and } \left[F_{2} \right] \right]_{a}^{D,l} = false \\ true & \text{else} \end{cases}$$

$$\left[\left[F_{1} \to F_{2} \right] \right]_{a}^{D,l} := \begin{cases} true & \text{if } \left[F_{1} \right] \right]_{a}^{D,l} = \left[F_{2} \right] \right]_{a}^{D,l} \\ false & \text{else} \end{cases}$$

The semantics coincides here with that of propositional logic.

The Semantics of Quantified Formulas

$$[\![\forall x : F]\!]_a^{D,I} := \begin{cases} true & \text{if } [\![F]\!]_{a[x \mapsto d]}^{D,I} = true \text{ for all } d \in D \\ false & \text{else} \end{cases}$$

► Formula is true, if body *F* is true for every value of the domain assigned to *x*.

$$[\exists x : F]_a^{D,l} := \begin{cases} true & \text{if } [F]_{a[x \mapsto d]}^{D,l} = true \text{ for some } d \in D \\ false & \text{else} \end{cases}$$

Formula is true, if body F is true for at least one value of the domain assigned to x.

$$a[x \mapsto d](y) = egin{cases} d & ext{if } x = y \ a(y) & ext{else} \end{cases}$$

The core of the semantics.

Example

$$\begin{split} D &= \mathbb{N}_{3} = \{zero, one, two\} \\ a &= [x \mapsto one, y \mapsto two, z \mapsto two, \ldots], \ I = [0 \mapsto zero, + \mapsto add, \ldots] \\ & [\![\forall x : \exists y : x + y = z]\!]_{a}^{D,I} = true \\ & [\![\exists y : x + y = z]\!]_{a[x \mapsto zero]}^{D,I} = true \\ & [\![x + y = z]\!]_{a[x \mapsto zero, y \mapsto zero]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto zero, y \mapsto two]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto zero, y \mapsto two]}^{D,I} = true \\ & [\![\exists y : x + y = z]\!]_{a[x \mapsto one]}^{D,I} = true \\ & [\![x + y = z]\!]_{a[x \mapsto one, y \mapsto zero]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto one, y \mapsto two]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto one, y \mapsto two]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto one, y \mapsto two]}^{D,I} = true \\ & [\![x + y = z]\!]_{a[x \mapsto one, y \mapsto two]}^{D,I} = true \\ & [\![x + y = z]\!]_{a[x \mapsto two, y \mapsto two]}^{D,I} = true \\ & [\![x + y = z]\!]_{a[x \mapsto two, y \mapsto two]}^{D,I} = true \\ & [\![x + y = z]\!]_{a[x \mapsto two, y \mapsto two]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto two, y \mapsto two]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto two, y \mapsto two]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto two, y \mapsto two]}^{D,I} = false \\ & [\![x + y = z]\!]_{a[x \mapsto two, y \mapsto two]}^{D,I} = false \end{aligned}$$

The systematic investigation of respectively search for assignments.

Wolfgang Schreiner and Wolfgang Windsteiger

http://www.risc.jku.at

Nested Quantifiers

When quantifiers of different type are nested, the order matters.

Example

Domain: natural numbers.

$$\forall x : \exists y : x < y \quad \rightsquigarrow \quad true$$

(Why? For the assignment $[x \mapsto \bar{x}]$ for x take $[y \mapsto \bar{x}+1]$ as the assignment for y. The meaning of x < y is then $\bar{x} < \bar{x}+1$, which is true no matter what \bar{x} is.)

 $\exists y : \forall x : x < y \quad \rightsquigarrow \quad false$

(Why? Assume it was true, i.e. there is an assignment $[y \mapsto \overline{y}]$ for y such that x < y is true for all assignments for x. But take $[x \mapsto \overline{y}]$ as the assignment for x. The meaning of x < y is then $\overline{y} < \overline{y}$, which is false, hence the original assumption must not be made, thus the meaning of the formula must be false.)

Semantics: Examples

- $\blacktriangleright \forall n : R(n,n)$
 - Domain: natural numbers.
 - ▶ *R* is interpreted as the divisibility relation on natural numbers.
 - Every natural number is divisible by itself. ~>> true
- \blacktriangleright $\forall n : R(n, n)$
 - Domain: real numbers.
 - ▶ *R* is interpreted as the less-than relation on real numbers.
 - ► Every real number is less than itself. ~~> false
- $\blacksquare \exists x : R(a,x) \land R(x,b)$
 - Domain: real numbers.
 - ► *R* is interpreted as the less-than relation on real numbers.
 - There is a real number x such that a < x and x < b. $\rightarrow ???$
 - ▶ Assignment $[a \mapsto 5, b \mapsto 6]$: There is an assignment for x such that 5 < x and x < 6. \rightarrow true, e.g. $[x \mapsto 5.5]$
 - ▶ Assignment $[a \mapsto 7, b \mapsto 6]$: There is an assignment for x such that 7 < x and x < 6. \rightarrow false, why?

Semantics Convention

- The meaning of "=", logical connectives, and quantifiers is defined by above rules.
- ► The meaning of all other symbols depends on the interpretation which can be chosen as desired and must be given explicitly.
 - It is in principle possible to express "a divides the sum of b and c" by

$$a \subseteq (b * c)$$

using the interpretation

 $[\subseteq \mapsto$ the divisibility relation, $* \mapsto$ the addition function].

Convention: if the interpretation is not given explicitly, then a "standard interpretation" is assumed.

Semantic Notions

Let F denote a formula, M a structure, a an assignment.

- ► *F* is satisfiable, if $\llbracket F \rrbracket_a^M = true$ for some *M* and *a*. Example: p(0,x) is satisfiable; $q(x) \land \neg q(x)$ is not.
- ► *M* is a model of *F* (short: $M \models F$), if $\llbracket F \rrbracket_a^M = true$ for all *a*. *Example:* ($\mathbb{N}, [0 \mapsto zero, p \mapsto less-equal]$) $\models p(0,x)$

► *F* is valid (short:
$$\models$$
 F), if *M* \models *F* for all *M*.

Example:
$$\models p(x) \land (p(x) \rightarrow q(x)) \rightarrow q(x)$$

- If ⊨ F, then F is true independent of the interpretation and the assignment, i.e., F is a "fact".
- Lemmas:
 - F is satisfiable, if $\neg F$ is not valid.
 - F is valid, if $\neg F$ is not satisfiable.

Logical Consequence

F is a logical consequence of formula set Γ (short: Γ ⊨ F), if for every structure M and assignment a, the following is true:

If $\llbracket G \rrbracket_a^M = true$ for every G in Γ , then also $\llbracket F \rrbracket_a^M = true$. $\{p(x), p(x) \rightarrow q(x)\} \models q(x)$

• If $\emptyset \models F$, then $\models F$, i.e., F is a "fact".

- F_2 is a logical consequence of formula F_1 , if $\{F_1\} \models F_2$.
 - F_2 "follows from" F_1 in every structure and assignment.
- ▶ Lemma: $({G_1, ..., G_n} \models F)$ is true if and only if the formula $(G_1 \land ... \land G_n \rightarrow F)$ is valid.

Logical consequence can be reduced to the validity of an implication.

Logical Equivalence

- Definition: two formulas F_1 and F_2 are logically equivalent (short: $F_1 \Leftrightarrow F_2$), if $F_1 \models F_2$ and $F_2 \models F_1$.
 - F_1 and F_2 mean the same, regardless of structure and assignment.
 - Every formula can always be substituted by an equivalent one.
- Lemma: if $F \Leftrightarrow F'$ and $G \Leftrightarrow G'$, then

 $\neg F \Leftrightarrow \neg F'$ $F \land G \Leftrightarrow F' \land G'$ $F \lor G \Leftrightarrow F' \lor G'$ $F \to G \Leftrightarrow F' \to G'$ $F \leftrightarrow G \Leftrightarrow F' \leftrightarrow G'$ $\forall x : F \Leftrightarrow \forall x : F'$ $\exists x : F \Leftrightarrow \exists x : F'$

• Lemma: $(F_1 \Leftrightarrow F_2)$ is true if and only if formula $(F_1 \leftrightarrow F_2)$ is valid. Logical equivalence can be reduced to the validity of an equivalence.

Equivalent Formulas

In addition to equivalences for connectives (see propositional logic):

$$\begin{array}{lll} \neg(\forall x:F) & \Leftrightarrow & \exists x:\neg F & (\text{De-Morgan}) \\ \neg(\exists x:F) & \Leftrightarrow & \forall x:\neg F & (\text{De-Morgan}) \\ \forall x:(F_1 \wedge F_2) & \Leftrightarrow & (\forall x:F_1) \wedge (\forall x:F_2) \\ \exists x:(F_1 \vee F_2) & \Leftrightarrow & (\exists x:F_1) \vee (\exists x:F_2) \\ \forall x:(F_1 \vee F_2) & \Leftrightarrow & F_1 \vee (\forall x:F_2), \text{ if } x \text{ does not occur free in } F_1 \\ \exists x:(F_1 \wedge F_2) & \Leftrightarrow & F_1 \wedge (\exists x:F_2), \text{ if } x \text{ does not occur free in } F_1 \end{array}$$

For a finite domain $\{v_1, \ldots, v_n\}$:

$$\begin{array}{ll} \forall x: F & \Leftrightarrow & F[v_1/x] \land \ldots \land F[v_n/x] \\ \exists x: F & \Leftrightarrow & F[v_1/x] \lor \ldots \lor F[v_n/x] \end{array}$$

E[t/x]: the expression E with every free occurrence of x substituted by the term t. ($\rightsquigarrow E$ has the same meaning for x as E[t/x] has for t.)

Some Formula Transformations

Push negations from the outside to the inside.

$$\neg(\forall x : p(x) \rightarrow \exists y : q(x,y))$$

$$\Leftrightarrow \exists x : \neg(p(x) \rightarrow \exists y : q(x,y))$$

$$\Leftrightarrow \exists x : \neg((\neg p(x)) \lor \exists y : q(x,y))$$

$$\Leftrightarrow \exists x : ((\neg \neg p(x)) \land \neg \exists y : q(x,y))$$

$$\Leftrightarrow \exists x : (p(x) \land \neg \exists y : q(x,y))$$

$$\Leftrightarrow \exists x : (p(x) \land \forall y : \neg q(x,y))$$

Reduce the scope of quantifiers.

$$\forall x, y : (p(x) \to q(x, y)) \Leftrightarrow \forall x, y : (\neg p(x) \lor q(x, y)) \Leftrightarrow \forall x : (\neg p(x) \lor \forall y : q(x, y)) \Leftrightarrow \forall x : (p(x) \to \forall y : q(x, y))$$

Replace finite quantifications.

$$\forall x \in \{0,1\} : p(x)$$

 $\Leftrightarrow p(0) \land p(1)$