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Special Topics

We will conclude by discussing the following special topics:

» the method of induction for reasoning about natural numbers,

> the expressiveness and limits of first-order predicate logic.
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Mathematical Induction
A method to prove statements over the natural numbers.

» Goal: prove
VxeN:F

i.e., formula F holds for all natural numbers.

» Rule:

K...F F[0/x] K...F (VyeN:Fly/x]— Fly+1/x])
K...F ¥xeN:F

F[t/x]: F where every free occurrence of x is replaced by t.

» Proof Steps:

> Induction base: prove that F holds for 0.
> Induction hypothesis: assume that F holds for new constant X.
> Induction step: prove that then F also holds for X+ 1.

Often the constant symbol x itself is chosen rather than x.

Works because every natural number is reachable by a finite number of 7™\
increments starting from 0. Wy
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Example
We prove the “sum of squares” formula

1 2_ n-(n+1)-(2n+1)

VneN:Z 6
i=1

by induction on n:

» Induction Base:

0 2_o_ 0:(0+1)(2:0+1)
i:ll o 6
» Induction Hypothesis:
Zi2:ﬁ~(ﬁ+1)~(2ﬁ+1)
i=1 6
» Induction Step:
n+1 A = (7 —
2 1\2 2() 2, N (A+1)-(2n+1)
=(A+1)0°+ = A+l —————
,gi’ (n+1) ,;I (n+1) 3
_6(n+1)2+n-(A+1)-(2a+1)  (A+1)-(6-(A+1)+nA-(2A+1))
- 6 - 6
_ (n+1)-(2n*+7n+6) _ (n+1)-(n+2)-(2n+3)
- 6 - 6
_(@+1)-((r+1)+1)-(2-(n+1)+1)
- 6
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Choice of Induction Variable

We define addition on N by primitive recursion:

x+0:=x (1)
x+(y+1):=(x+y)+1 (2)

Our goal is to prove the associativity law
VxeN,yeNzeN:x+(y+z)=(x+y)+z
For this purpose, we prove

VzeN:VxeN,yeN:x+(y+z)=(x+y)+z
F

by induction on z.

Sometimes the appropriate choice of the induction variable is critical.
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Choice of Induction Variable

We prove by induction on z
VzeN:VxeN,yeN:x+(y+z)=(x+y)+z
> Induction base: we prove

VxeN,yeN:x+(y+0)=(x+y)+0

We prove for arbitrary xp,y0 € N

s0+(10+0) x40 (x0+y0) +0
» Induction hypothesis (*): we assume
VxeN,yeN:x+(y+z)=(x+y)+z
> Induction step: we prove
VxeN,yeN:ix+(y+(z+1))=(x+y)+(z+1)
We prove for arbitrary xp,yg € N

o+ 0o+ (z+1) Z o+ (o +2)+1) 2 (0 + (vo +2)) +1

) ) 2N,
Dot +1Z o) vy 0 L2

~
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Induction with a Different Starting Value

» Goal: prove
VxeN:x>b— F

i.e., formula F holds for all natural numbers greater than or equal to
some natural number b.

» Rule:

K...F Flb/x] K...F (WweN:y>bAFly/x]— Fly+1/x])

K...F (xeN:x>b—F)

» Proof Steps:

> Induction base: prove that F holds for b.
> Induction hypothesis: assume that F holds for X > b.
> Induction step: prove that then F also holds for X+ 1.

Induction works with arbitrary starting values.
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Example

We prove
VneN:n>4—n?><2"

» |nduction base: we show

42 =16=2*

» Induction hypothesis: we assume for n > 4

n? < 2" (%)
» Induction step: we show
2 2 I=n , 2 0sn 4
(n+1)*=n"+2n+1 < n“+2n+n=n"+3n < n“+4n

4<n (*)

< mP+nn=n+n=2n*<2.2"=2"1 O
2,
W
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Complete Induction

A generalized form of the induction method.

» Rule:

K...F (VW xeN:(VYyeN:y<x— Fly/x]) = F)
K... F ¥vxeN:F

» Proof steps:

> Induction hypothesis: assume that F holds for all y less than Xx.
> Induction step: prove that F then also holds for X.

The induction assumption is applied not only to the direct predecessor.
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Example
We take function T : N — N where

0 if n=0
T(n)=1<2-T(n/2) if n>0A2[n
1+2-T((n—1)/2) else
and prove by complete induction on n

VYneN:T(n)=n

» Induction hypothesis:
VmeN:m<n—T(m)=m (%)

» Induction step:
» Case n=0: we know T(n)=T(0)=0=n
» Case n>0A2|n: we know

T(m =2.T(n/2) 2 2.(n/2) = n
» Case n>0A—(2|n): we know
(%) QM.EO
T(n)=1+2-T((n—-1)/2) =14+2-((n—1)/2)=1+(n—1)=n 0O ¢
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Expressiveness of First-Order Logic

> Variables denote elements of the domain, thus no quantification is
possible over functions and predicates of the domain.

This would require second-order predicate logic.
> Nevertheless we express in first-order logic statements such as
VA,B,f € A— B:f is bijective - 3g€ B— A:Vx € B: f(g(x)) =x

» This is possible because formulas are usually interpreted over the
domain of sets, i.e., all variables denote sets:

A= B:={SCAxB|
(VacA:3beB:(a,b)eS) A
(Va,d',b:(a,b) e SA(a',b)eS—a=2)}

» Terms like f(g(x)) involve a hidden binary function “apply”
f(g(x)) ~ apply(f,apply(g,x))
which denotes “function application™:
apply(f,x):=the y: (x,y) e f

First-order predicate logic over the domain of sets is the “working horse" of -ME.
mathematics; virtually all of mathematics is formulated in this framework. ™
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Soundness and Completeness of First-Order Logic

Now we turn our attention to the second question.

Completeness Theorem (Kurt Godel, 1929): First order predicate logic has
a proof calculus for which the following holds:

» Soundness: if by the rules of the calculus a conclusion F can be
derived from a set of assumptions ' (I' - F), then F is a logical
consequence of I (I' = F).

» Completeness: if F is a logical consequence of I (I' |= F), then by the
rules of the calculus F can be derived from I' (I'+ F).

No logic that is stronger (more expressive) than first order predicate logic
has a proof calculus that also enjoys both soundness and completeness.

Wolfgang Schreiner and Wolfgang Windsteiger

2"
e

12/14


http://www.risc.jku.at

Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth
of every formula is algorithmically decidable.

» Undecidability (Church/Turing, 1936/1937): there does not exist any
algorithm that for given formula set ' and formula F always
terminates and says whether [ |= F holds or not.

» Semidecidability: but there exists an algorithm, that for given I'
and F, if [ = F, detects this fact in a finite amount of time.

This algorithm searches for a proof of [ = F in a complete
proof calculus; if such a proof exists, it will eventually detect
it; however, if no such proof exists, the search runs forever.

Automatic proof search is not able to detect that a formula is not true.
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Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas

> Incompleteness Theorem (Kurt Godel, 1931): it is in no sound logic
possible to prove all true arithmetic statements (i.e., all statements
about natural numbers with addition and multiplication).

» To adequately characterize N, the (infinite) axiom scheme of
mathematical induction has to be added.

» Corollary: in every sound formal system that is sufficiently rich there
are statements that can neither be proved nor disproved.

In practice, complete reasoners for first-order logic are often supported by
(complete or incomplete) reasoners for special theories.
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