First Order Predicate Logic

Syntax

Wolfgang Schreiner and Wolfgang Windsteiger Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

Why not only Propositional Logic?

Propositional logic is about "sentences" and their combination.

A (logic) formula F is a "sentence" that can be true or false.

$$F ::= \top \mid \bot \mid p$$
$$\mid (\neg F) \mid (F_1 \land F_2) \mid (F_1 \lor F_2) \mid (F_1 \to F_2) \mid (F_1 \leftrightarrow F_2)$$

- Atomic formulas \top , \bot , p with fixed/given truth values.
- Compound formulas constructed from (logical) connectives (¬, ∧, ∨, →, ↔); their truth values are computed from the truth values of their subformulas according to the "truth table" of the connective.
- Propositional logic cannot describe:
 - 1. "concrete objects" of a certain domain,
 - 2. functional relationships,
 - 3. statements about "for all" objects or about "for some" objects.

Predicate logic is an extension of propositional logic, which (among other things!) allows to express these.

The Syntax of Predicate Logic: Terms and Formulas

We want to speak about objects and their properties.

- For this predicate logic provides two kinds of "expressions":
 - Terms denoting objects (values).
 - Formulas denoting properties of objects (truth values).

$$t ::= \underline{v} \mid \underline{c} \mid \underline{f(t_1, \dots, t_n)}$$

$$F ::= \top \mid \bot \mid \underline{p(t_1, \dots, t_n)}$$

$$\mid (\neg F) \mid (F_1 \land F_2) \mid (F_1 \lor F_2) \mid (F_1 \to F_2) \mid (F_1 \leftrightarrow F_2)$$

$$\mid (\forall v : F) \mid (\exists v : F)$$

- v: a variable denoting a varying object.
- c: a constant denoting a fixed object.
- ▶ f: a function symbol denoting a function that maps the objects denoted by terms $t_1, ..., t_n$ to another object.
- ▶ p: a predicate symbol denoting a predicate that maps the objects denoted by terms t_1, \ldots, t_n to a truth value.
- $\lor \forall, \exists$: a quantifier "binding" a variable v within a formula F.
 - $\forall v : F$: "for all (values of) v, F is true".
 - ▶ $\exists v : F$: "there exists <u>some</u> (value of) v for which F is true".

Example

Tanja is female and every female is the daughter of her father.

```
isFemale(Tanja) \land (\forall x : (isFemale(x) \rightarrow isDaughter(x, fatherOf(x))))
```

- ► "Names":
 - ► Tanja . . . constant
 - x . . . variable
 - ► isFemale, isDaughter . . . predicate symbol
 - fatherOf ...function symbol
- ► Terms:
 - ► Tanja, x, fatherOf(x).
- ► Formulas:
 - ▶ isFemale(Tanja)
 - ▶ isFemale(x)
 - isDaughter(x, fatherOf(x))
 - $isFemale(x) \rightarrow isDaughter(x, fatherOf(x))$
 - $\forall x : (isFemale(x) \rightarrow isDaughter(x, fatherOf(x)))$
 - ▶ $isFemale(Tanja) \land (\forall x : (isFemale(x) \rightarrow isDaughter(x, fatherOf(x))))$

Formulas and Parentheses

We use the following convention to reduce the number of parentheses:

- Decreasing binding power:
 - ▶ ¬ binds stronger than ∧.
 - \blacktriangleright \land binds stronger than \lor .
 - ▶ \lor binds stronger than \to .
 - ightharpoonup ightharpoonup binds stronger than ightharpoonup.
 - ▶ \leftrightarrow binds stronger than \forall , \exists .
- ▶ Consequence for quantified formula $\forall v : F$ and $\exists v : F$:
 - Without parentheses, the scope of a quantified formula reaches to the end of the enclosing formula.

Example

The previous formula can be also written as

$$isFemale(Tanja) \land \forall x : isFemale(x) \rightarrow isDaughter(x, fatherOf(x))$$

Predicate Logic and Natural Language

Alex is Tom's sister.

Tom has a sister in Linz.

$$\exists x : \mathsf{sister}(x,\mathsf{Tom}) \land \mathsf{lives\text{-}in}(x,\mathsf{Linz})$$

► Tom has two sisters.

$$\exists x, y : x \neq y \land sister(x, Tom) \land sister(y, Tom)$$

▶ Tom has no brother.

```
\neg \exists x : brother(x, Tom) i.e. there does not exist a brother of Tom \forall x : \neg brother(x, Tom) i.e. everybody is not a brother of Tom
```

Many natural language statements can be expressed in predicate logic.

Free and Bound Variables

- ▶ Every occurrence of x in $\forall x : F$ is called bound (by the \forall -quantifier).
- ▶ Every occurrence of x in $\exists x : F$ is called bound (by the \exists -quantifier).
- ▶ An occurrence of a variable is called free if it is not bound.
- ▶ A formula with no free variables is called closed.

Example

```
\operatorname{converges}(u,x) \vee x = 0 \qquad \rightsquigarrow \text{ no bound vars., } u,x \text{ free} \forall x : \operatorname{converges}(u,x) \wedge x = 0 \qquad \rightsquigarrow x \text{ is bound, } u \text{ is free} \forall u : \forall x : \operatorname{converges}(u,x) \leftrightarrow x = 0 \qquad \rightsquigarrow u,x \text{ are bound, formula closed} \forall u : \operatorname{converges}(u,x) \rightarrow \exists x : x = 0 \qquad \rightsquigarrow u \text{ bound, } x \text{ free in one context} and bound in another one.
```

As we will see later, if a formula is not closed, its truth value depends on the values given to its free variables.

The Free Variables of a Formula

fv(t) and fv(F) compute the set of free vars of term t and formula F.

$$fv(\top) = \emptyset$$

$$fv(\bot) = \emptyset$$

$$fv(t) = \emptyset$$

$$fv(r) = \{v\}$$

$$fv(r) = \emptyset$$

$$fv(r) = \emptyset$$

$$fv(r) = fv(r)$$

Example

$$fv(\forall x : p(x) \to \exists y : q(x,y)) = fv(p(x) \to \exists y : q(x,y)) \setminus \{x\}$$

$$= (fv(p(x)) \cup fv(\exists y : q(x,y))) \setminus \{x\}$$

$$= (\{x\} \cup (fv(q(x,y)) \setminus \{y\})) \setminus \{x\}$$

$$= (\{x\} \cup (\{x,y\} \setminus \{y\}) \setminus \{x\})$$

$$= (\{x\} \cup \{x\}) \setminus \{x\} = \{x\} \setminus \{x\} = \emptyset$$

Abstract Syntax vs. Concrete Syntax

Terms and formulas are not always given in the syntax presented so far.

- ► Abstract syntax: one particular "standard form" of expressions.
 - Up to now we presented this standard form.
 - Abstract syntax must allow unique identification of "type of the expression" and its "subexpressions".
- ► Concrete syntax: any concrete "notation" to write expressions.
 - One expression in abstract syntax can have many different forms in concrete syntax.
 - ► The language of mathematics is very rich in notations (e.g. subscripts, superscripts, writing things one above the other, etc.).
 - Well-chosen notation should convey intuitive meaning.

For understanding their meaning, it is important to translate expressions from concrete syntax to their standard form.

Syntax: Notations and Conventions

Function/predicate symbols are often written using infix/prefix/postfix/matchfix operators:

Variable arity (overloading, no details):

$$a+b \rightsquigarrow +(a,b)$$

$$a+b+c \rightsquigarrow \begin{cases} +(a,b,c) \\ +(+(a,b),c) \\ +(a,+(b,c)) \end{cases}$$
 (beyond syntax!)

Syntax: Examples

a is less than b

- ► Abstract syntax: < (a, b)
- ▶ Notation: a < b

The open interval between a and b

- Abstract syntax: openInterval(a, b)
- ► Notation:]*a*, *b*[, (*a*, *b*)

The remainder of a divided by b

- Abstract syntax: remainder(a, b)
- Notation: mod(a, b), $a \mod b$, $a \pmod b$, a%b

f converges to a

- ► Abstract syntax: converges(f, a)► Notation: $f \to a$, $\lim_{n \to \infty} f(n) \xrightarrow{n \to \infty} a$, $\lim_{n \to \infty} f(n) = a$

Syntax: Conditions in Quantifiers

- ▶ Problem: quantifier shall only range over a "subdomain" of values.
 - Only values satisfying a "filter condition" C shall be considered.
- Solution:

$$\forall x: C \rightarrow F$$

$$\exists x : C \wedge F$$

► Notation:

$$\forall C : F$$

▶ The quantified variable in C must be recognized from the context.

Example

"All natural numbers are greater equal zero."

$$\forall x \in \mathbb{N} : x \ge 0$$

$$\forall x: x \in \mathbb{N} \to x \ge 0$$

"There exists some natural number whose predecessor is zero."

$$\exists x \in \mathbb{N} : x - 1 = 0$$

$$\exists x \in \mathbb{N} : x - 1 = 0$$
 $\exists x : x \in \mathbb{N} \land x - 1 = 0$

▶ "For every $x \in \mathbb{N}$ there exists a number between x and x + 2."

$$\forall x \in \mathbb{N} : \exists x < y : y < x + 2$$

Standard form?

The construction of abstract syntax trees from their linear representation (proceeds easiest in a top-down fashion).

- Analyze quantified formulas (constructed from variables and other formulas by applications of quantifiers).
- ► Analyze propositional formulas (constructed from other formulas by applications of connectives).
- Analyze atomic formulas (constructed from terms by applications of predicate symbols).
- Analyze terms (variables or constants or constructed from other terms by applications of function symbols).
- ► This analysis determines the roles of names as variables, constants, function symbols, and predicate symbols.
 - Names like x, y, z, ... are often used for variables.
 - ▶ Names like a, b, c, ... are often used for constants.
 - ▶ Names like f, g, h, ... are often used for function symbols.
 - ▶ Names like p, q, r, ... are often used for predicate symbols.
- ▶ Determine the free variables of every formula.

▶ For
$$Q \in \{\forall, \exists\}$$
: tree $(Qx : F) = tree(x)$ tree (F)

▶ For
$$\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$$
: tree $(F_1 \circ F_2) = \text{tree}(F_1)$ tree (F_2)

- Formula $\neg F$: tree $(\neg F) = \frac{}{\text{tree}(F)}$
- Formula $p(t_1,...,t_n)$: tree $(p(t_1,...,t_n)) = tree(t_1)...tree(t_n)$
- ► Term $f(t_1,...,t_n)$: tree $(f(t_1,...,t_n)) = tree(t_1)...tree(t_n)$
- ▶ Constant c: tree(c) = \boxed{c}
- ▶ Variable x: tree(x) = \boxed{x}

$$\forall \varepsilon : \exists N : \forall n : (n > N \rightarrow |f(n) - a| < \varepsilon)$$

- Quantifiers: ε , N, n must be variables.
- ▶ Left and right of \rightarrow must be formulas.
- ► n > N must be an atomic formula (infix notation, predicate symbol ">" applied to variables n and N.
- ▶ $|f(n) a| < \varepsilon$: must be an atomic formula (infix notation, predicate symbol "<" applied to term |f(n) a| and variable ε).
- ▶ |f(n)-a|: function symbol "|.|" applied to f(n)-a.
- ► f(n) a: function symbol "—" applied to f(n) and a.
- ▶ f(n): function symbol f applied to variable n.

A syntax analysis can yield multiple results.

$$\forall f: \exists a: \mathsf{converges}(f, a) \rightarrow a = 0$$

- 1. $\forall f : \exists a : (converges(f, a) \rightarrow a = 0)$
- 2. $\forall f: ((\exists a: converges(f, a)) \rightarrow a = 0)$
- 3. $(\forall f : \exists a : converges(f, a)) \rightarrow a = 0$

Language Extensions

- ▶ Locally bound variables: **let** x = t **in** E
 - E can be a term or a formula, let ... in ... is term or a formula, respectively.
 - Binds the variable x.
 - ▶ Meaning: E[t/x].
 - ▶ Alternative notation: E where x = t or $E|_{x=t}$.
 - ▶ If F is a formula, then

let
$$x = t$$
 in $F \Leftrightarrow \exists x : x = t \land F$.

- ▶ Conditional: **if** C **then** E₁ **else** E₂
 - E_i can be both terms or both formulas, if C then E_1 else E_2 is term or a formula, respectively.
 - Meaning: if C means true, then the meaning of E₁, otherwise the meaning of E₂.
 - ▶ If E_1 and E_2 are formulas, then

if C then
$$E_1$$
 else $E_2 \Leftrightarrow (C \to E_1) \land (\neg C \to E_2)$.

Further Quantifiers

Common mathematical language uses more quantifiers:

- $\sum_{i=1}^{h} t: \text{ binds } i. \text{ Meaning: } t[1/i] + \cdots + t[h/i].$
- $ightharpoonup \prod_{i=1}^h t$: binds i. Meaning: $t[1/i] \cdots t[h/i]$.
- ▶ $\{x \in A \mid P\}$: binds x. Meaning: The set of all x in A such that P is true.
- ▶ $\{t \mid x \in A \land P\}$: binds x. Meaning: The set of all t when x is in A and P is true.
- ▶ $\lim_{x \to v} t$: binds x. Meaning: The limit of t when x goes to v.
- $\max_{x \in A} t$: binds x. Meaning: The maximum of t when x runs through A.
- $\min_{x \in A} t$: binds x. Meaning: The minimum of t when x runs through A.
- **.**...

